On Normal Hankel Matrices of Low Orders
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 207-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the previous work of the authors, the problem of describing complex $n\times n$ matrices that are simultaneously normal and Hankel was reduced to a system of $n-1$ real equations with respect to $2n$ unknowns. These equations are quadratic, and it is not at all clear whether they have real solutions. It is shown here that the systems corresponding to $n=3$ and $n=4$ are solvable and have infinitely many real solutions.
Keywords: Hankel matrix, Toeplitz matrix, backward identity, upper (lower) triangular matrix, Cramer's rule.
Mots-clés : normal matrix, circulant, Hankel circulant
@article{MZM_2008_84_2_a3,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {On {Normal} {Hankel} {Matrices} of {Low} {Orders}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {207--218},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - On Normal Hankel Matrices of Low Orders
JO  - Matematičeskie zametki
PY  - 2008
SP  - 207
EP  - 218
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a3/
LA  - ru
ID  - MZM_2008_84_2_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A V. N. Chugunov
%T On Normal Hankel Matrices of Low Orders
%J Matematičeskie zametki
%D 2008
%P 207-218
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a3/
%G ru
%F MZM_2008_84_2_a3
Kh. D. Ikramov; V. N. Chugunov. On Normal Hankel Matrices of Low Orders. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 207-218. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a3/

[1] Kh. D. Ikramov, “Ob opisanii normalnykh teplitsevykh matrits”, ZhVM i MF, 34:3 (1994), 473–479 | MR | Zbl

[2] Kh. D. Ikramov, “O klassifikatsii normalnykh teplitsevykh matrits s veschestvennymi elementami”, Matem. zametki, 57:5 (1995), 670–680 | MR | Zbl

[3] Kh. D. Ikramov, V. N. Chugunov, “Kriterii normalnosti kompleksnoi teplitsevoi matritsy”, ZhVM i MF, 36:2 (1996), 3–10 | MR | Zbl

[4] V. I. Gelfgat, “Kriterii normalnosti teplitsevoi matritsy”, ZhVM i MF, 35 (1995), 1428–1432 | MR | Zbl

[5] D. R. Farenick, M. Krupnik, N. Krupnik, W. Y. Lee, “Normal Toeplitz matrices”, SIAM J. Matrix Anal. Appl., 17:4 (1996), 1037–1043 | DOI | MR | Zbl

[6] K. Ito, “Every normal Toeplitz matrix is either of type I or of type II”, SIAM J. Matrix Anal. Appl., 17:4 (1996), 998–1006 | DOI | MR | Zbl

[7] A. Arimoto, “A simple proof of the classification of normal Toeplitz matrices”, Electron. J. Linear Algebra, 9 (2002), 108–111 | MR | Zbl

[8] G. Gu, L. Patton, “Commutation relations for Toeplitz and Hankel matrices”, SIAM J. Matrix Anal. Appl., 24:3 (2003), 728–746 | DOI | MR | Zbl

[9] Kh. D. Ikramov, “K voprosu ob opisanii normalnykh gankelevykh matrits”, Fundament. i prikl. matem., 3:3 (1997), 809–819 | MR | Zbl

[10] Kh. D. Ikramov, V. N. Chugunov, “O kososimmetrichnoi chasti proizvedeniya teplitsevykh matrits”, Matem. zametki, 63:1 (1998), 138–141 | MR | Zbl

[11] Kh. D. Ikramov, V. N. Chugunov, “Ob odnom novom klasse normalnykh gankelevykh matrits”, Vestn. Mosk. un-ta. Ser. 15. Vychislit. matem., kibernet., 2007, no. 1, 10–13 | MR

[12] Kh. D. Ikramov, V. N. Chugunov, “O normalnykh gankelevykh matritsakh”, Zapiski nauch. sem. POMI, 346 (2007), 63–80