On Normal Hankel Matrices of Low Orders
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 207-218
Voir la notice de l'article provenant de la source Math-Net.Ru
In the previous work of the authors, the problem of describing complex $n\times n$ matrices that are simultaneously normal and Hankel was reduced to a system of $n-1$ real equations with respect to $2n$ unknowns. These equations are quadratic, and it is not at all clear whether they have real solutions. It is shown here that the systems corresponding to $n=3$ and $n=4$ are solvable and have infinitely many real solutions.
Keywords:
Hankel matrix, Toeplitz matrix, backward identity, upper (lower) triangular matrix, Cramer's rule.
Mots-clés : normal matrix, circulant, Hankel circulant
Mots-clés : normal matrix, circulant, Hankel circulant
@article{MZM_2008_84_2_a3,
author = {Kh. D. Ikramov and V. N. Chugunov},
title = {On {Normal} {Hankel} {Matrices} of {Low} {Orders}},
journal = {Matemati\v{c}eskie zametki},
pages = {207--218},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a3/}
}
Kh. D. Ikramov; V. N. Chugunov. On Normal Hankel Matrices of Low Orders. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 207-218. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a3/