On the Distribution of Integer Random Variables Satisfying Two Linear Relations
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 69-98
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the multiplicative (in the sense of Vershik) probability measure corresponding to an arbitrary real dimension $d$ on the set of all collections $\{N_j\}$ of integer nonnegative numbers $N_j$, $j=l_0,l_0+1,\dots$, satisfying the conditions
$$
\sum_{j=l_0}^\infty jN_{j}\le M,
\qquad \sum_{j=l_0}^\infty N_j=N,
$$
where
$l_0,M,N$ are natural numbers. If $M,N\to\infty$ and the rates of growth of these parameters satisfy a certain relation depending on $d$, and $l_0$ depends on them in a special way (for $d\ge2$ we can take $l_0=1$), then, in the limit, the “majority” of collections (with respect to the measure indicated above) concentrates near
the limit distribution described by the Bose–Einstein formulas. We study the probabilities of the deviations of the sums $\sum_{j=l}^{\infty} N_j$ from the corresponding cumulative integrals for the limit distribution. In an earlier paper (see [6]), we studied the case $d=3$.
Keywords:
Bose–Einstein distribution, multiplicative measure, cumulative distribution, cumulative integral
Mots-clés : Bose particles.
Mots-clés : Bose particles.
@article{MZM_2008_84_1_a5,
author = {V. P. Maslov and V. E. Nazaikinskii},
title = {On the {Distribution} of {Integer} {Random} {Variables} {Satisfying} {Two} {Linear} {Relations}},
journal = {Matemati\v{c}eskie zametki},
pages = {69--98},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a5/}
}
TY - JOUR AU - V. P. Maslov AU - V. E. Nazaikinskii TI - On the Distribution of Integer Random Variables Satisfying Two Linear Relations JO - Matematičeskie zametki PY - 2008 SP - 69 EP - 98 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a5/ LA - ru ID - MZM_2008_84_1_a5 ER -
V. P. Maslov; V. E. Nazaikinskii. On the Distribution of Integer Random Variables Satisfying Two Linear Relations. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 69-98. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a5/