On the Distribution of Integer Random Variables Satisfying Two Linear Relations
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 69-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multiplicative (in the sense of Vershik) probability measure corresponding to an arbitrary real dimension $d$ on the set of all collections $\{N_j\}$ of integer nonnegative numbers $N_j$, $j=l_0,l_0+1,\dots$, satisfying the conditions $$ \sum_{j=l_0}^\infty jN_{j}\le M, \qquad \sum_{j=l_0}^\infty N_j=N, $$ where $l_0,M,N$ are natural numbers. If $M,N\to\infty$ and the rates of growth of these parameters satisfy a certain relation depending on $d$, and $l_0$ depends on them in a special way (for $d\ge2$ we can take $l_0=1$), then, in the limit, the “majority” of collections (with respect to the measure indicated above) concentrates near the limit distribution described by the Bose–Einstein formulas. We study the probabilities of the deviations of the sums $\sum_{j=l}^{\infty} N_j$ from the corresponding cumulative integrals for the limit distribution. In an earlier paper (see [6]), we studied the case $d=3$.
Keywords: Bose–Einstein distribution, multiplicative measure, cumulative distribution, cumulative integral
Mots-clés : Bose particles.
@article{MZM_2008_84_1_a5,
     author = {V. P. Maslov and V. E. Nazaikinskii},
     title = {On the {Distribution} of {Integer} {Random} {Variables} {Satisfying} {Two} {Linear} {Relations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {69--98},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a5/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - V. E. Nazaikinskii
TI  - On the Distribution of Integer Random Variables Satisfying Two Linear Relations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 69
EP  - 98
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a5/
LA  - ru
ID  - MZM_2008_84_1_a5
ER  - 
%0 Journal Article
%A V. P. Maslov
%A V. E. Nazaikinskii
%T On the Distribution of Integer Random Variables Satisfying Two Linear Relations
%J Matematičeskie zametki
%D 2008
%P 69-98
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a5/
%G ru
%F MZM_2008_84_1_a5
V. P. Maslov; V. E. Nazaikinskii. On the Distribution of Integer Random Variables Satisfying Two Linear Relations. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 69-98. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a5/

[1] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl., 2, Addison–Wesley Publ., London, 1976 ; G. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR | Zbl | MR | Zbl

[2] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | MR | Zbl

[3] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. II”, Matem. zametki, 83:3 (2008), 381–401

[4] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. I”, Matem. zametki, 83:2 (2008), 232–263

[5] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. III”, Matem. zametki, 83:6 (2008), 880–898

[6] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh dvumya lineinymi neravenstvami. I”, Matem. zametki, 83:4 (2008), 559–580

[7] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, URSS, M., 2004 | MR | Zbl

[8] A. M. Vershik, “Predelnoe raspredelenie energii kvantovogo idealnogo gaza s tochki zreniya teorii razbienii naturalnykh chisel”, UMN, 52:2 (1997), 139–146 | MR | Zbl

[9] M. E. J. Newman, “Power laws, Pareto distributions, and Zipf's law”, Contemp. Phys., 46:5 (2005), 323–351 | DOI

[10] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2006

[11] E. W. Weisstein, Polylogarithm, http://mathworld.wolfram.com/Polylogarithm.html