The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an inequality between the $L_q$-mean of the $k$th derivative of an algebraic polynomial of degree $n\ge 1$ and the $L_0$-mean of the polynomial on a closed interval is obtained. Earlier, the author obtained the best constant in this inequality for $k=0$, $q\in[0,\infty]$ and $1\le k\le n$, $q\in\{0\}\cup[1,\infty]$. Here a new method for finding the best constant for all $0\le k\le n$, $q\in[0,\infty]$, and, in particular, for the case $1\le k\le n$, $q\in(0,1)$, which has not been studied before is proposed. We find the order of growth of the best constant with respect to $n$ as $n\to \infty$ for fixed $k$ and $q$.
Mots-clés : algebraic polynomial
Keywords: Markov–Nikolskii inequality, the spaces $L_q$ and $L_0$, geometric mean of a polynomial, $L_q$-mean, extremal polynomial, majorization principle.
@article{MZM_2008_84_1_a0,
     author = {P. Yu. Glazyrina},
     title = {The {Sharp} {Markov--Nikolskii} {Inequality} for {Algebraic} {Polynomials} in the {Spaces~}$L_q$ and $L_0$ on a {Closed} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/}
}
TY  - JOUR
AU  - P. Yu. Glazyrina
TI  - The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
JO  - Matematičeskie zametki
PY  - 2008
SP  - 3
EP  - 22
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/
LA  - ru
ID  - MZM_2008_84_1_a0
ER  - 
%0 Journal Article
%A P. Yu. Glazyrina
%T The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
%J Matematičeskie zametki
%D 2008
%P 3-22
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/
%G ru
%F MZM_2008_84_1_a0
P. Yu. Glazyrina. The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/

[1] G. G. Khardi, D, E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[2] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publ., Singapore, 1994 | MR | Zbl

[3] E. Hille, G. Szegö, J. D. Tamarkin, “On some generalisations of a theorem of A. Markoff”, Duke Math. J., 3:4 (1937), 729–739 | DOI | MR | Zbl

[4] N. K. Bari, “Obobschenie neravenstv S. N. Bernshteina i A. A Markova”, Izv. AN SSSR. Ser. Matem., 18 (1954), 159–176 | MR | Zbl

[5] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960 | MR | Zbl

[6] I. K. Daugavet, S. Z. Rafalson, “Nekotorye neravenstva tipa Markova–Nikolskogo dlya algebraicheskikh mnogochlenov”, Vestn. LGU. Ser. matem., mekh., astron., 1972, no. 1, 15–25 | MR | Zbl

[7] V. I. Ivanov, “Nekotorye neravenstva dlya trigonometricheskikh mnogochlenov i ikh proizvodnykh v raznykh metrikakh”, Matem. zametki, 18:4 (1975), 489–498 | MR | Zbl

[8] B. Bojanov, “Markov-type inequalities for polynomials and splines”, Approximation Theory, X: Abstract and Classical Analysis (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, 31–90 | MR | Zbl

[9] G. Labelle, “Concerning polynomials on the unit interval”, Proc. Amer. Math. Soc., 20:2 (1969), 321–326 | DOI | MR | Zbl

[10] A. Korkine, G. Zolotareff, “Sur un certain minimum”, Nouv. Ann. Math. Sér. 2, 12 (1873), 337–356 | Zbl

[11] P. Yu. Glazyrina, “Limiting case of the inequlity in various metrics for algebraic polynomials on an interval”, East J. Approx., 9:1 (2003), 1–19 | MR | Zbl

[12] P. Yu. Glazyrina, “Neravenstvo bratev Markovykh v prostranstve $L_0$ na otrezke”, Matem. zametki, 78:1 (2005), 59–65 | MR | Zbl

[13] P. Yu. Glazyrina, “Neravenstvo Markova–Nikolskogo dlya prostranstv $L_q$, $L_0$ na otrezke”, Tr. in-ta matem. i mekh., 11:2 (2005), 60–71 | MR | Zbl

[14] N. G. de Bruijn, “On the zeros of a polynomial and of its derivative”, Indag. Math., 8 (1946), 635–642 | MR | Zbl

[15] N. G. de Bruijn, T. A. Springer, “On the zeros of a polynomial and of its derivate. II.”, Indag. Math., 9 (1947), 458–464 | MR | Zbl

[16] R. Pereira, “Differentiators and the geometry of polynomials”, J. Math. Anal. Appl., 285:1 (2003), 336–348 | DOI | MR | Zbl

[17] S. M. Malamud, “Inverse spectral problem for normal matrices and the Gauss–Lucas theorem”, Trans. Amer. Math. Soc., 357:10 (2005), 4043–4064 | DOI | MR | Zbl

[18] I. I. Privalov, Subgarmonicheskie funktsii, ONTI, M.–L., 1937

[19] V. A. Markov, O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, Tipografiya Imperatorskoi AN, SPb, 1892

[20] A. Marshall, I. Olkin, Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983 | MR | Zbl