The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 3-22

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an inequality between the $L_q$-mean of the $k$th derivative of an algebraic polynomial of degree $n\ge 1$ and the $L_0$-mean of the polynomial on a closed interval is obtained. Earlier, the author obtained the best constant in this inequality for $k=0$, $q\in[0,\infty]$ and $1\le k\le n$, $q\in\{0\}\cup[1,\infty]$. Here a new method for finding the best constant for all $0\le k\le n$, $q\in[0,\infty]$, and, in particular, for the case $1\le k\le n$, $q\in(0,1)$, which has not been studied before is proposed. We find the order of growth of the best constant with respect to $n$ as $n\to \infty$ for fixed $k$ and $q$.
Mots-clés : algebraic polynomial
Keywords: Markov–Nikolskii inequality, the spaces $L_q$ and $L_0$, geometric mean of a polynomial, $L_q$-mean, extremal polynomial, majorization principle.
@article{MZM_2008_84_1_a0,
     author = {P. Yu. Glazyrina},
     title = {The {Sharp} {Markov--Nikolskii} {Inequality} for {Algebraic} {Polynomials} in the {Spaces~}$L_q$ and $L_0$ on a {Closed} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/}
}
TY  - JOUR
AU  - P. Yu. Glazyrina
TI  - The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
JO  - Matematičeskie zametki
PY  - 2008
SP  - 3
EP  - 22
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/
LA  - ru
ID  - MZM_2008_84_1_a0
ER  - 
%0 Journal Article
%A P. Yu. Glazyrina
%T The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval
%J Matematičeskie zametki
%D 2008
%P 3-22
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/
%G ru
%F MZM_2008_84_1_a0
P. Yu. Glazyrina. The Sharp Markov--Nikolskii Inequality for Algebraic Polynomials in the Spaces~$L_q$ and $L_0$ on a Closed Interval. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a0/