Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 722-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions for the convergence in the spaces $L^p[0,1]$, $1\le p\infty$, of biorthogonal series of the form $$ f=\sum_{n=0}^\infty(f,\psi_n)\varphi_n $$ in the system $\{\varphi_n\}_{n\ge 0}$ of contractions and translations of a function $\varphi$. The proposed conditions are stated with regard to the fact that the functions belong to the space $\mathfrak L^p$ of absolutely bundle-convergent Fourier–Haar series with norm $$ \|f\|_p^\ast=|(f,\chi_0)| +\sum_{k=0}^\infty 2^{k(1/2-1/p)} \biggl(\mspace{2mu}\sum_{n=2^k}^{2^{k+1}-1} |(f,\chi_n)|^p\biggr)^{1/p}, $$ where $(f,\chi_n)$, $n=0,1,\dots$, are the Fourier coefficients of a function $f\in L^p[0,1]$ in the Haar system $\{\chi_n\}_{n\ge 0}$. In particular, we present conditions for the system $\{\varphi_n\}_{n\ge 0}$ of contractions and translations of a function $\varphi$ to be a basis for the spaces $L^p[0,1]$ and $\mathfrak L^p$.
Mots-clés : biorthogonal series
Keywords: system of contractions and translations of a function, the space $L^p[0,1]$, bundle convergence of Fourier–Haar series, Haar function, wavelet theory.
@article{MZM_2008_83_5_a8,
     author = {P. A. Terekhin},
     title = {Convergence of {Biorthogonal} {Series} in the {System} of {Contractions} and {Translations} of {Functions} in the {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {722--740},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a8/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces
JO  - Matematičeskie zametki
PY  - 2008
SP  - 722
EP  - 740
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a8/
LA  - ru
ID  - MZM_2008_83_5_a8
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces
%J Matematičeskie zametki
%D 2008
%P 722-740
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a8/
%G ru
%F MZM_2008_83_5_a8
P. A. Terekhin. Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 722-740. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a8/

[1] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl

[2] J. Schauder, “Eine Eigenshaft des Haarschen Orthogonalsystems”, Math. Z., 28:1 (1928), 317–320 | DOI | MR | Zbl

[3] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Z., 26:1 (1927), 47–65 | DOI | MR | Zbl

[4] G. Faber, “Uber die Orthogonalfunktionen des Herrn Haar”, Jahresber. Deutsch. Math.Ver., 19 (1910), 104–112 | Zbl

[5] Z. A. Chanturiya, “O bazisakh prostranstva nepreryvnykh funktsii”, Matem. sb., 88:4 (1972), 589–608 | MR | Zbl

[6] T. N. Saburova, “O bazisakh v $C[0,1]$ tipa Fabera–Shaudera”, Teoriya funktsii i priblizhenii, ch. 3 (Saratov, 1986), Tr. 3-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo un-ta, Saratov, 1988, 44–46

[7] I. Dobeshi, Desyat lektsii po veivletam, NITs RKhD, Izhevsk, 2001 | MR | Zbl

[8] Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math., 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[9] A. Cohen, I. Daubechies, P. Vial, “Wavelets on the interval and fast wavelets transform”, Appl. Comput. Harmon. Anal., 1:1 (1993), 54–81 | DOI | MR | Zbl

[10] A. Cohen, I. Daubechies, B. Jawerth, P. Vial, “Multiresolution analysis, wavelets and fast algorithms on an interval”, C. R. Acad. Sci. Paris Sér. I Math., 316:5 (1993), 417–421 | MR | Zbl

[11] L. Andersson, N. Hall, B. Jawerth, G. Peters, “Wavelets on closed subset of the real line”, Recent Advances in Wavelet Analysis, Wavelet Anal. Appl., 3, Academic Press, Boston, MA, 1994, 1–61 | MR | Zbl

[12] C. K. Chui, J.-Z. Wang, “A general framework of compact supported splines and wavelets”, J. Approx. Theory, 71:3 (1992), 263–304 | DOI | MR | Zbl

[13] A. P. Petukhov, “Periodicheskie vspleski”, Matem. sb., 188:10 (1997), 69–94 | MR | Zbl

[14] M. Skopina, “Multiresolution analysis of periodic functions”, East J. Approx., 3:2 (1997), 203–224 | MR | Zbl

[15] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[16] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005

[17] P. A. Terekhin, “O predstavlyayuschikh svoistvakh sistemy szhatii i sdvigov funktsii na otrezke”, Izv. Tulskogo gos. un-ta. Ser. matem., mekh., inform., 4:1 (1998), 136–138 | MR

[18] P. A. Terekhin, “Neravenstva dlya komponentov summiruemykh funktsii i ikh predstavleniya po elementam sistemy szhatii i sdvigov”, Izv. vuzov. Matem., 1999, no. 8, 74–81 | MR | Zbl

[19] P. A. Terekhin, “Bazisy Rissa, porozhdennye szhatiyami i sdvigami funktsii na otrezke”, Matem. zametki, 72:4 (2002), 547–560 | MR | Zbl

[20] P. A. Terekhin, “K voprosu o vozmuscheniyakh sistemy Khaara”, Matem. zametki, 75:3 (2004), 466–469 | MR | Zbl

[21] P. A. Terekhin, “Usloviya bazisnosti sistem szhatii i sdvigov funktsii v prostranstve $L_p[0,1]$”, Izv. Saratovskogo un-ta. Ser. matem., mekh., inform., 7:1 (2007), 39–44

[22] P. A. Terekhin, “Multisdvig v gilbertovom prostranstve”, Funkts. analiz i ego pril., 39:1 (2005), 69–81 | MR | Zbl

[23] N. Wiener, “Tauberian theorem”, Ann. of Math. (2), 33:1 (1932), 1–100 | DOI | MR | Zbl

[24] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963 | MR | Zbl

[25] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[26] H. Rademacher, “Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen”, Math. Ann., 87:1–2 (1922), 112–138 | DOI | MR

[27] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391 | MR | Zbl

[28] B. I. Golubov, “Ryady po sisteme Khaara”, Itogi nauki i tekhniki. Matem. analiz, VINITI, M., 1971, 109–146 | MR | Zbl

[29] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[30] V. I. Filippov, P. Oswald, “Representation in $L^p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl