Representation of Harmonic Functions as Potentials and the Cauchy Problem
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 763-778
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we propose an explicit formula for the reconstruction of a harmonic function in the domain from its known values and from the values of its normal derivative on part of the boundary, i.e., we give an explicit continuation and a regularization formula of the solution of the Cauchy problem for the Laplace equation.
Keywords:
harmonic function, potential, Cauchy problem, Carleman function, entire function, Green's formula, Lyapunov condition.
Mots-clés : Laplace equation
Mots-clés : Laplace equation
@article{MZM_2008_83_5_a12,
author = {Sh. Yarmukhamedov},
title = {Representation of {Harmonic} {Functions} as {Potentials} and the {Cauchy} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {763--778},
year = {2008},
volume = {83},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a12/}
}
Sh. Yarmukhamedov. Representation of Harmonic Functions as Potentials and the Cauchy Problem. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 763-778. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a12/
[1] M. M. Lavrentev, O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR | Zbl
[2] A. A. Shlyapunov, “O zadache Koshi dlya uravneniya Laplasa”, Sib. matem. zhurn., 33:3 (1992), 205–215 | MR | Zbl
[3] T. Carleman, Les fonctions quasi analitiques, Gauthier-Villars, Paris, 1926
[4] M. M. Lavrentev, “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR | Zbl
[5] Sh. Yarmukhamedov, “Funktsiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. matem. zhurn., 45:3 (2004), 702–719 | MR | Zbl
[6] M. Ikehata, “Inverse conductivity problem in the infinite slab”, Inverse Problems, 17:3 (2001), 437–454 | DOI | MR | Zbl