Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_5_a11, author = {M. G. Szajewska}, title = {A {Property} of the {Curvature} and {Torsion} of a {Regular} {Family} of {Curves} in~$E^n$}, journal = {Matemati\v{c}eskie zametki}, pages = {757--762}, publisher = {mathdoc}, volume = {83}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/} }
M. G. Szajewska. A Property of the Curvature and Torsion of a Regular Family of Curves in~$E^n$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 757-762. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/
[1] N. V. Efimov, “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, Dokl. AN SSSR, 93:4 (1953), 609–611 | MR | Zbl
[2] Yu. A. Aminov, “Divergentnye svoistva krivizn vektornogo polya i semeistva poverkhnostei”, Matem. zametki, 3:1 (1968), 103–111 | MR | Zbl
[3] Yu. A. Aminov, “$n$-mernye analogi integralnoi formuly S. N. Bernshteina”, Matem. sb., 75:3 (1968), 375–399 | MR | Zbl
[4] Yu. A. Aminov, “O semeistvakh podmnogoobrazii postoyannoi otritsatelnoi krivizny v mnogomernom evklidovom prostranstve”, Matem. sb., 197:2 (2006), 3–16 | MR
[5] A. R. Forsyth, Lectures on the Differential Geometry of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1912 | Zbl