A Property of the Curvature and Torsion of a Regular Family of Curves in~$E^n$
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 757-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

In is proved that, for a regular family of algebraic curves in $E^n$, there exists a sequence of points at which all but the last curvature of the curves simultaneously tend to zero.
Keywords: regular family of algebraic curves, mean curvature, Gaussian curvature, curvature and torsion of an algebraic curve, Bianchi coordinate system.
@article{MZM_2008_83_5_a11,
     author = {M. G. Szajewska},
     title = {A {Property} of the {Curvature} and {Torsion} of a {Regular} {Family} of {Curves} in~$E^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {757--762},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/}
}
TY  - JOUR
AU  - M. G. Szajewska
TI  - A Property of the Curvature and Torsion of a Regular Family of Curves in~$E^n$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 757
EP  - 762
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/
LA  - ru
ID  - MZM_2008_83_5_a11
ER  - 
%0 Journal Article
%A M. G. Szajewska
%T A Property of the Curvature and Torsion of a Regular Family of Curves in~$E^n$
%J Matematičeskie zametki
%D 2008
%P 757-762
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/
%G ru
%F MZM_2008_83_5_a11
M. G. Szajewska. A Property of the Curvature and Torsion of a Regular Family of Curves in~$E^n$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 757-762. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/

[1] N. V. Efimov, “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, Dokl. AN SSSR, 93:4 (1953), 609–611 | MR | Zbl

[2] Yu. A. Aminov, “Divergentnye svoistva krivizn vektornogo polya i semeistva poverkhnostei”, Matem. zametki, 3:1 (1968), 103–111 | MR | Zbl

[3] Yu. A. Aminov, “$n$-mernye analogi integralnoi formuly S. N. Bernshteina”, Matem. sb., 75:3 (1968), 375–399 | MR | Zbl

[4] Yu. A. Aminov, “O semeistvakh podmnogoobrazii postoyannoi otritsatelnoi krivizny v mnogomernom evklidovom prostranstve”, Matem. sb., 197:2 (2006), 3–16 | MR

[5] A. R. Forsyth, Lectures on the Differential Geometry of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1912 | Zbl