A Property of the Curvature and Torsion of a Regular Family of Curves in $E^n$
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 757-762
Cet article a éte moissonné depuis la source Math-Net.Ru
In is proved that, for a regular family of algebraic curves in $E^n$, there exists a sequence of points at which all but the last curvature of the curves simultaneously tend to zero.
Keywords:
regular family of algebraic curves, mean curvature, Gaussian curvature, curvature and torsion of an algebraic curve, Bianchi coordinate system.
@article{MZM_2008_83_5_a11,
author = {M. G. Szajewska},
title = {A {Property} of the {Curvature} and {Torsion} of a {Regular} {Family} of {Curves} in~$E^n$},
journal = {Matemati\v{c}eskie zametki},
pages = {757--762},
year = {2008},
volume = {83},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/}
}
M. G. Szajewska. A Property of the Curvature and Torsion of a Regular Family of Curves in $E^n$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 757-762. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a11/
[1] N. V. Efimov, “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, Dokl. AN SSSR, 93:4 (1953), 609–611 | MR | Zbl
[2] Yu. A. Aminov, “Divergentnye svoistva krivizn vektornogo polya i semeistva poverkhnostei”, Matem. zametki, 3:1 (1968), 103–111 | MR | Zbl
[3] Yu. A. Aminov, “$n$-mernye analogi integralnoi formuly S. N. Bernshteina”, Matem. sb., 75:3 (1968), 375–399 | MR | Zbl
[4] Yu. A. Aminov, “O semeistvakh podmnogoobrazii postoyannoi otritsatelnoi krivizny v mnogomernom evklidovom prostranstve”, Matem. sb., 197:2 (2006), 3–16 | MR
[5] A. R. Forsyth, Lectures on the Differential Geometry of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1912 | Zbl