Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_5_a10, author = {Wei Xiang Lin and Ding Ren}, title = {More on {Planar} {Point} {Subsets} with a {Specified} {Number} of {Interior} {Points}}, journal = {Matemati\v{c}eskie zametki}, pages = {752--756}, publisher = {mathdoc}, volume = {83}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a10/} }
Wei Xiang Lin; Ding Ren. More on Planar Point Subsets with a Specified Number of Interior Points. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 752-756. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a10/
[1] D. Avis, K. Hosono, M. Urabe, “On the existence of a point subset with a specified number of interior points”, Discrete Math., 241:1–3 (2001), 33–40 | DOI | MR | Zbl
[2] T. Fevens, “A note on point subsets with a specified number of interior points”, Discrete and computational geometry, Lecture Notes in Comput. Sci., 2866, Springer, Berlin, 2003, 152–158 | DOI | MR
[3] P. Erdös, G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl
[4] J. Horton, “Sets with no empty $7$-gons”, Canad. Math. Bull., 26:4 (1983), 482–484 | MR | Zbl
[5] K. Hosono, G. Károlyi, M. Urabe, “On the existence of a convex polygon with a specified number of interior points”, Discrete Geometry, In Honor of W. Kuperberg's 60th Birthday, Monogr. Textbooks Pure Appl. Math., 253, Marcel Dekker, New York, 2003, 351–358 | MR | Zbl
[6] T. Bisztriczky, K. Hosono, G. Károlyi, M. Urabe, “Constructions from empty polygons”, Period. Math. Hungar., 49:2 (2004), 1–8 | DOI | MR | Zbl
[7] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005 | MR | Zbl
[8] J. D. Kalbfleisch, J. G. Kalbfleisch, R. G. Santon, “A combinatorial problem on convex $n$-gons”, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, LA, 1970, 180–188 | MR | Zbl
[9] W. Morris, V. Soltan, “The Erdös–Szekeres problem on points in convex position – a survey”, Bull. Amer. Math. Soc. (N.S.), 37:4 (2000), 437–458 | DOI | MR | Zbl