Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 643-649

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for approximating functions $f$ analytic in a neighborhood of the point $z=0$ by finite sums of the form $\sum_k\lambda_kh(\lambda_k z)$ is proposed, where $h$ is a chosen function analytic on the unit disk and the approximation is carried out by choosing the complex numbers $\lambda_k=\lambda_k(f)$. Some applications to numerical analysis are given.
Keywords: approximation of analytic functions, numerical derivation and integration, Mergelyan's theorem, maximum principle.
Mots-clés : simple fractions
@article{MZM_2008_83_5_a0,
     author = {V. I. Danchenko},
     title = {Approximation {Properties} of {Sums} of the {Form} $\sum_k\lambda_kh(\lambda_k z)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--649},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 643
EP  - 649
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/
LA  - ru
ID  - MZM_2008_83_5_a0
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$
%J Matematičeskie zametki
%D 2008
%P 643-649
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/
%G ru
%F MZM_2008_83_5_a0
V. I. Danchenko. Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 643-649. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/