Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_5_a0, author = {V. I. Danchenko}, title = {Approximation {Properties} of {Sums} of the {Form} $\sum_k\lambda_kh(\lambda_k z)$}, journal = {Matemati\v{c}eskie zametki}, pages = {643--649}, publisher = {mathdoc}, volume = {83}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/} }
V. I. Danchenko. Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 643-649. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/
[1] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy shkoly-konferentsii, posvyaschennoi 130-letiyu so dnya rozhdeniya D. F. Egorova (Kazan, 13.09–18.09, 1999), Kazan, 74–77
[2] E. P. Dolzhenko, “Naiprosteishie drobi”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy V Kazanskoi mezhdunarodnoi letnei shkoly-konferentsii (Kazan, 04.06–04.07, 2001), Kazan, 90–94
[3] O. N. Kosukhin, “Ob approksimativnykh svoistvakh naiprosteishikh drobei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 54–59 | MR | Zbl
[4] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 1, 3–8 | MR | Zbl
[5] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | MR | Zbl
[6] V. I. Danchenko, “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:4 (2006), 33–52 | MR
[7] V. I. Danchenko, “Ob approksimativnykh svoistvakh summ vida $\sum_k\lambda_kh(\lambda_kz)$”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal, 10.07–15.07, 2006), Suzdal, 2006, 86–88
[8] V. I. Danchenko, “Ob approksimatsii summami vida $\sum_k\lambda_k h(\lambda_k z)$”, Tretya Petrozavodskaya Mezhdunarodnaya konferentsiya po teorii funktsii kompleksnogo peremennogo, posvyaschennaya 100-letiyu G. M. Goluzina (10.06–1.07, 2006), Petrozavodsk, 18–20
[9] A. G. Kurosh, Kurs vysshei algebry, Fizmatlit, M., 1963 | MR | Zbl
[10] A. V. Fryantsev, “O chislennoi approksimatsii differentsialnykh polinomov”, Sovremennye metody teorii funktsii i smezhnye problemy, Trudy Voronezhskoi zimnei matematicheskoi shkoly (27.01–2.02, 2007), Izd-vo Voronezh. un-ta, Voronezh, 233–234