Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 643-649.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for approximating functions $f$ analytic in a neighborhood of the point $z=0$ by finite sums of the form $\sum_k\lambda_kh(\lambda_k z)$ is proposed, where $h$ is a chosen function analytic on the unit disk and the approximation is carried out by choosing the complex numbers $\lambda_k=\lambda_k(f)$. Some applications to numerical analysis are given.
Keywords: approximation of analytic functions, numerical derivation and integration, Mergelyan's theorem, maximum principle.
Mots-clés : simple fractions
@article{MZM_2008_83_5_a0,
     author = {V. I. Danchenko},
     title = {Approximation {Properties} of {Sums} of the {Form} $\sum_k\lambda_kh(\lambda_k z)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--649},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 643
EP  - 649
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/
LA  - ru
ID  - MZM_2008_83_5_a0
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$
%J Matematičeskie zametki
%D 2008
%P 643-649
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/
%G ru
%F MZM_2008_83_5_a0
V. I. Danchenko. Approximation Properties of Sums of the Form $\sum_k\lambda_kh(\lambda_k z)$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 643-649. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a0/

[1] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy shkoly-konferentsii, posvyaschennoi 130-letiyu so dnya rozhdeniya D. F. Egorova (Kazan, 13.09–18.09, 1999), Kazan, 74–77

[2] E. P. Dolzhenko, “Naiprosteishie drobi”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy V Kazanskoi mezhdunarodnoi letnei shkoly-konferentsii (Kazan, 04.06–04.07, 2001), Kazan, 90–94

[3] O. N. Kosukhin, “Ob approksimativnykh svoistvakh naiprosteishikh drobei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 54–59 | MR | Zbl

[4] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 1, 3–8 | MR | Zbl

[5] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | MR | Zbl

[6] V. I. Danchenko, “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:4 (2006), 33–52 | MR

[7] V. I. Danchenko, “Ob approksimativnykh svoistvakh summ vida $\sum_k\lambda_kh(\lambda_kz)$”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal, 10.07–15.07, 2006), Suzdal, 2006, 86–88

[8] V. I. Danchenko, “Ob approksimatsii summami vida $\sum_k\lambda_k h(\lambda_k z)$”, Tretya Petrozavodskaya Mezhdunarodnaya konferentsiya po teorii funktsii kompleksnogo peremennogo, posvyaschennaya 100-letiyu G. M. Goluzina (10.06–1.07, 2006), Petrozavodsk, 18–20

[9] A. G. Kurosh, Kurs vysshei algebry, Fizmatlit, M., 1963 | MR | Zbl

[10] A. V. Fryantsev, “O chislennoi approksimatsii differentsialnykh polinomov”, Sovremennye metody teorii funktsii i smezhnye problemy, Trudy Voronezhskoi zimnei matematicheskoi shkoly (27.01–2.02, 2007), Izd-vo Voronezh. un-ta, Voronezh, 233–234