On the Distribution of Integer Random Variables Related by Two Linear Inequalities: I
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 559-580
Cet article a éte moissonné depuis la source Math-Net.Ru
The authors' two preceding papers deal with the problem on the allocation of indistinguishable particles to positive integer energy levels under the condition that the total energy of the system is bounded above by some constant $M$. The estimates proved there imply that, for large $M$, most of the allocations concentrate near a limit distribution (which is the Bose–Einstein distribution, provided that the particles obey the corresponding statistics). The present paper continues this trend of research by considering the case in which not only the total energy is constrained but also the overall number of particles is specified. We study both the Bose and the Gibbs distribution and analyze the phenomenon whereby the Bose distribution passes into the Gibbs distribution in the limit as the number of particles is relatively small.
Keywords:
Bose–Einstein statistics, Boltzmann–Gibbs statistics, cumulative distribution, entropy
Mots-clés : allocation of particles.
Mots-clés : allocation of particles.
@article{MZM_2008_83_4_a7,
author = {V. P. Maslov and V. E. Nazaikinskii},
title = {On the {Distribution} of {Integer} {Random} {Variables} {Related} by {Two} {Linear} {Inequalities:~I}},
journal = {Matemati\v{c}eskie zametki},
pages = {559--580},
year = {2008},
volume = {83},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a7/}
}
TY - JOUR AU - V. P. Maslov AU - V. E. Nazaikinskii TI - On the Distribution of Integer Random Variables Related by Two Linear Inequalities: I JO - Matematičeskie zametki PY - 2008 SP - 559 EP - 580 VL - 83 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a7/ LA - ru ID - MZM_2008_83_4_a7 ER -
V. P. Maslov; V. E. Nazaikinskii. On the Distribution of Integer Random Variables Related by Two Linear Inequalities: I. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 559-580. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a7/
[1] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. I”, Matem. zametki, 83:2 (2008), 232–263
[2] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. II”, Matem. zametki, 83:3 (2008), 381–401
[3] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR | Zbl
[4] A. N. Shiryaev, Veroyatnost, kn. 1: Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004