Necessary Condition for the Existence of the $S$ Matrix Outside the Scope of Perturbation Theory
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 613-617.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Maslov–Shvedov complex-germ method due to Maslov–Shvedov, we obtain a necessary condition for the existence of the quantum-field $S$ matrix outside the scope of perturbation theory in the leading order of semiclassical approximation. This condition consists in that the tangent symplectic transformation to the evolution operator of the nonlinear classical field equation is realized by a unitary transformation of Fock space. It follows from the results of the book of Maslov and Shvedov that this condition always holds.
Keywords: semiclassical approximation, Maslov–Shvedov complex germ, symplectic transformation, evolution operator, Fock space, Hilbert–Schmidt operator.
@article{MZM_2008_83_4_a12,
     author = {A. V. Stoyanovskii},
     title = {Necessary {Condition} for the {Existence} of the $S$ {Matrix} {Outside} the {Scope} of {Perturbation} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {613--617},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a12/}
}
TY  - JOUR
AU  - A. V. Stoyanovskii
TI  - Necessary Condition for the Existence of the $S$ Matrix Outside the Scope of Perturbation Theory
JO  - Matematičeskie zametki
PY  - 2008
SP  - 613
EP  - 617
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a12/
LA  - ru
ID  - MZM_2008_83_4_a12
ER  - 
%0 Journal Article
%A A. V. Stoyanovskii
%T Necessary Condition for the Existence of the $S$ Matrix Outside the Scope of Perturbation Theory
%J Matematičeskie zametki
%D 2008
%P 613-617
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a12/
%G ru
%F MZM_2008_83_4_a12
A. V. Stoyanovskii. Necessary Condition for the Existence of the $S$ Matrix Outside the Scope of Perturbation Theory. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 613-617. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a12/

[1] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v zadache mnogikh chastits i v kvantovoi teorii polya, Editorial URSS, M., 2000

[2] D. Shale, “Linear symmetries of free boson fields”, Trans. Amer. Math. Soc., 103:1 (1962), 149–167 | DOI | MR | Zbl

[3] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR | Zbl

[4] C. G. Torre, M. Varadarajan, “Functional evolution of free quantum fields”, Classical Quantum Gravity, 16:8 (1999), 2651–2668 ; arXiv: hep-th/9811222v2 | DOI | MR | Zbl