Combinatorial Construction of Tangent Vector Fields on Spheres
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 590-605

Voir la notice de l'article provenant de la source Math-Net.Ru

For every odd $n$, on the sphere $S^n$, $\rho(n)-1$ linear orthonormal tangent vector fields, where $\rho(n)$ is the Hurwitz–Radon number, are explicitly constructed. For each $8\times8$ sign matrix, compositions for infinite-dimensional positive definite quadratic forms are explicitly constructed. The infinite-dimensional real normed algebras thus arising are proved to have certain properties of associativity and divisibility type.
Keywords: linear orthonormal tangent vector field, odd-dimensional sphere, composition of quadratic forms, Clifford algebra, Hurwitz–Radon theorem, Cayley number.
@article{MZM_2008_83_4_a10,
     author = {A. A. Ohnikyan},
     title = {Combinatorial {Construction} of {Tangent} {Vector} {Fields} on {Spheres}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {590--605},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a10/}
}
TY  - JOUR
AU  - A. A. Ohnikyan
TI  - Combinatorial Construction of Tangent Vector Fields on Spheres
JO  - Matematičeskie zametki
PY  - 2008
SP  - 590
EP  - 605
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a10/
LA  - ru
ID  - MZM_2008_83_4_a10
ER  - 
%0 Journal Article
%A A. A. Ohnikyan
%T Combinatorial Construction of Tangent Vector Fields on Spheres
%J Matematičeskie zametki
%D 2008
%P 590-605
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a10/
%G ru
%F MZM_2008_83_4_a10
A. A. Ohnikyan. Combinatorial Construction of Tangent Vector Fields on Spheres. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 590-605. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a10/