Combinatorial Construction of Tangent Vector Fields on Spheres
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 590-605
Voir la notice de l'article provenant de la source Math-Net.Ru
For every odd $n$, on the sphere $S^n$, $\rho(n)-1$ linear orthonormal tangent vector fields, where $\rho(n)$ is the Hurwitz–Radon number, are explicitly constructed. For each $8\times8$ sign matrix, compositions for infinite-dimensional positive definite quadratic forms are explicitly constructed. The infinite-dimensional real normed algebras thus arising are proved to have certain properties of associativity and divisibility type.
Keywords:
linear orthonormal tangent vector field, odd-dimensional sphere, composition of quadratic forms, Clifford algebra, Hurwitz–Radon theorem, Cayley number.
@article{MZM_2008_83_4_a10,
author = {A. A. Ohnikyan},
title = {Combinatorial {Construction} of {Tangent} {Vector} {Fields} on {Spheres}},
journal = {Matemati\v{c}eskie zametki},
pages = {590--605},
publisher = {mathdoc},
volume = {83},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a10/}
}
A. A. Ohnikyan. Combinatorial Construction of Tangent Vector Fields on Spheres. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 590-605. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a10/