Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_4_a1, author = {A. I. Bogolyubskii}, title = {Distribution of {Alternation} {Points} in {Best} {Rational} {Approximations}}, journal = {Matemati\v{c}eskie zametki}, pages = {493--502}, publisher = {mathdoc}, volume = {83}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a1/} }
A. I. Bogolyubskii. Distribution of Alternation Points in Best Rational Approximations. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 493-502. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a1/
[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Gostekhizdat, M.–L., 1947 | Zbl
[2] M. I. Kadets, “O raspredelenii tochek maksimalnogo ukloneniya pri approksimatsii nepreryvnykh funktsii mnogochlenami”, UMN, 15:1 (1960), 199–202 | MR | Zbl
[3] P. B. Borwein, A. Kroó, R. Grothmann, E. B. Saff, “The density of alternation points in rational approximation”, Proc. Amer. Math. Soc., 105:4 (1989), 881–888 | DOI | MR | Zbl
[4] A. Kroó, F. Peherstorfer, “On the asymptotic distribution of oscillation points in rational approximation”, Anal. Math., 19:3 (1993), 225–232 | DOI | MR | Zbl
[5] A. V. Luganskaya, “Raspredelenie tochek alternansa pri priblizhenii nepreryvnoi funktsii ratsionalnymi drobyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 50–54 | MR | Zbl
[6] D. Braess, D. S. Lubinsky, E. B. Saff, “Behavior of alternation points in best rational approximation”, Acta Appl. Math., 33:2–3 (1993), 195–210 | DOI | MR | Zbl
[7] H.-P. Blatt, R. Grothmann, R. Kovacheva, “Poles and alternation points in real rational Chebyshev approximation”, Comput. Methods Funct. Theory, 3:1–2 (2003), 165–177 | MR | Zbl
[8] G. G. Lorentz, “Distribution of alternation points in uniform polynomial approximation”, Proc. Amer. Math. Soc., 92:3 (1984), 401–403 | DOI | MR | Zbl
[9] H.-P. Blatt, “Über rationale Tschebyscheff-Approximation mehrerer Funktionen”, J. Approximation Theory, 9:2 (1973), 126–148 | DOI | MR | Zbl
[10] G. G. Lorentz, “Approximation by incomplete polynomials (problems and results)”, Padé and Rational Approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976), Academic Press, New York, 1977, 289–302 | MR | Zbl
[11] E. B. Saff, R. S. Varga, “On lacunary incomplete polynomials”, Math. Z., 177:3 (1981), 297–314 | DOI | MR | Zbl
[12] J. H. B. Kemperman, G. G. Lorentz, “Bounds for polynomials with applications”, Nederl. Akad. Wetensch. Indag. Math., 41:1 (1979), 13–26 | MR | Zbl
[13] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill Book Co., New York, 1966 | MR | Zbl
[14] R. B. Barrar, H. L. Loeb, “On the continuity of the nonlinear Tschebyscheff operator”, Pacific J. Math., 32 (1970), 593–601 | MR | Zbl
[15] S. N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, ch. 1, Matematika v monografiyakh: Osnovnaya ser., 1, ONTI NKTP SSSR, L.–M., 1937
[16] W. Gehlen, “Unboundedness of the Lipschitz constants of best polynomial approximation”, J. Approx. Theory, 106:1 (2000), 110–142 | DOI | MR | Zbl
[17] A. Kroó, “On certain orthogonal polynomials, Nikolski- and Turán-type inequalities, and interpolatory properties of best approximants”, J. Approx. Theory, 73:2 (1993), 162–179 | DOI | MR | Zbl
[18] A. Kroó, E. B. Saff, “The density of extreme points in complex polynomial approximation”, Proc. Amer. Math. Soc., 103:1 (1988), 203–209 | DOI | MR | Zbl
[19] H.-P. Blatt, R. Grothmann, R. Kovacheva, “Sequences with equi-distributed extreme points in uniform polynomial approximation”, J. Approx. Theory, 126:2 (2004), 157–170 | DOI | MR | Zbl
[20] A. Kroó, F. Peherstorfer, “Interpolatory properties of best rational $L_1$-approximations”, Constr. Approx., 4:1 (1988), 97–106 | DOI | MR | Zbl
[21] H.-P. Blatt, R. Grothmann, R. K. Kovacheva, “Sign changes in rational $L_w^1$-approximation”, Ukr. matem. zhurn., 58:2 (2006), 283–287 | MR | Zbl