Distribution of Alternation Points in Best Rational Approximations
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 493-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of counting measures of alternation point sets in best rational approximations to the equilibrium measure. It is shown that, for any prescribed nondecreasing sequence of denominator degrees, there exists a function analytic on $[0,1]$ and a sequence of numerator degrees such that the corresponding sequence of measures does not converge to the equilibrium measure of the interval.
Keywords: best rational approximation, equilibrium measure, counting measure, Chebyshev (Walsh) table, Chebyshev rational operator.
Mots-clés : alternation point
@article{MZM_2008_83_4_a1,
     author = {A. I. Bogolyubskii},
     title = {Distribution of {Alternation} {Points} in {Best} {Rational} {Approximations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {493--502},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a1/}
}
TY  - JOUR
AU  - A. I. Bogolyubskii
TI  - Distribution of Alternation Points in Best Rational Approximations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 493
EP  - 502
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a1/
LA  - ru
ID  - MZM_2008_83_4_a1
ER  - 
%0 Journal Article
%A A. I. Bogolyubskii
%T Distribution of Alternation Points in Best Rational Approximations
%J Matematičeskie zametki
%D 2008
%P 493-502
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a1/
%G ru
%F MZM_2008_83_4_a1
A. I. Bogolyubskii. Distribution of Alternation Points in Best Rational Approximations. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 493-502. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a1/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Gostekhizdat, M.–L., 1947 | Zbl

[2] M. I. Kadets, “O raspredelenii tochek maksimalnogo ukloneniya pri approksimatsii nepreryvnykh funktsii mnogochlenami”, UMN, 15:1 (1960), 199–202 | MR | Zbl

[3] P. B. Borwein, A. Kroó, R. Grothmann, E. B. Saff, “The density of alternation points in rational approximation”, Proc. Amer. Math. Soc., 105:4 (1989), 881–888 | DOI | MR | Zbl

[4] A. Kroó, F. Peherstorfer, “On the asymptotic distribution of oscillation points in rational approximation”, Anal. Math., 19:3 (1993), 225–232 | DOI | MR | Zbl

[5] A. V. Luganskaya, “Raspredelenie tochek alternansa pri priblizhenii nepreryvnoi funktsii ratsionalnymi drobyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 50–54 | MR | Zbl

[6] D. Braess, D. S. Lubinsky, E. B. Saff, “Behavior of alternation points in best rational approximation”, Acta Appl. Math., 33:2–3 (1993), 195–210 | DOI | MR | Zbl

[7] H.-P. Blatt, R. Grothmann, R. Kovacheva, “Poles and alternation points in real rational Chebyshev approximation”, Comput. Methods Funct. Theory, 3:1–2 (2003), 165–177 | MR | Zbl

[8] G. G. Lorentz, “Distribution of alternation points in uniform polynomial approximation”, Proc. Amer. Math. Soc., 92:3 (1984), 401–403 | DOI | MR | Zbl

[9] H.-P. Blatt, “Über rationale Tschebyscheff-Approximation mehrerer Funktionen”, J. Approximation Theory, 9:2 (1973), 126–148 | DOI | MR | Zbl

[10] G. G. Lorentz, “Approximation by incomplete polynomials (problems and results)”, Padé and Rational Approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976), Academic Press, New York, 1977, 289–302 | MR | Zbl

[11] E. B. Saff, R. S. Varga, “On lacunary incomplete polynomials”, Math. Z., 177:3 (1981), 297–314 | DOI | MR | Zbl

[12] J. H. B. Kemperman, G. G. Lorentz, “Bounds for polynomials with applications”, Nederl. Akad. Wetensch. Indag. Math., 41:1 (1979), 13–26 | MR | Zbl

[13] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill Book Co., New York, 1966 | MR | Zbl

[14] R. B. Barrar, H. L. Loeb, “On the continuity of the nonlinear Tschebyscheff operator”, Pacific J. Math., 32 (1970), 593–601 | MR | Zbl

[15] S. N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, ch. 1, Matematika v monografiyakh: Osnovnaya ser., 1, ONTI NKTP SSSR, L.–M., 1937

[16] W. Gehlen, “Unboundedness of the Lipschitz constants of best polynomial approximation”, J. Approx. Theory, 106:1 (2000), 110–142 | DOI | MR | Zbl

[17] A. Kroó, “On certain orthogonal polynomials, Nikolski- and Turán-type inequalities, and interpolatory properties of best approximants”, J. Approx. Theory, 73:2 (1993), 162–179 | DOI | MR | Zbl

[18] A. Kroó, E. B. Saff, “The density of extreme points in complex polynomial approximation”, Proc. Amer. Math. Soc., 103:1 (1988), 203–209 | DOI | MR | Zbl

[19] H.-P. Blatt, R. Grothmann, R. Kovacheva, “Sequences with equi-distributed extreme points in uniform polynomial approximation”, J. Approx. Theory, 126:2 (2004), 157–170 | DOI | MR | Zbl

[20] A. Kroó, F. Peherstorfer, “Interpolatory properties of best rational $L_1$-approximations”, Constr. Approx., 4:1 (1988), 97–106 | DOI | MR | Zbl

[21] H.-P. Blatt, R. Grothmann, R. K. Kovacheva, “Sign changes in rational $L_w^1$-approximation”, Ukr. matem. zhurn., 58:2 (2006), 283–287 | MR | Zbl