Zeta Functions of Bielliptic Surfaces over Finite Fields
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 273-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a bielliptic surface over a finite field, and let the elliptic curve $B$ be the image of the Albanese mapping $S\to B$. In this case, the zeta function of the surface is equal to the zeta function of the direct product $\mathbb P^1\times B$. A classification of the possible zeta functions of bielliptic surfaces is also presented in the paper.
Keywords: variety over a finite field, zeta function, Albanese mapping, elliptic curve, étale cohomology, isogeny class.
Mots-clés : bielliptic surface, Frobenius morphism
@article{MZM_2008_83_2_a8,
     author = {S. Yu. Rybakov},
     title = {Zeta {Functions} of {Bielliptic} {Surfaces} over {Finite} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--285},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a8/}
}
TY  - JOUR
AU  - S. Yu. Rybakov
TI  - Zeta Functions of Bielliptic Surfaces over Finite Fields
JO  - Matematičeskie zametki
PY  - 2008
SP  - 273
EP  - 285
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a8/
LA  - ru
ID  - MZM_2008_83_2_a8
ER  - 
%0 Journal Article
%A S. Yu. Rybakov
%T Zeta Functions of Bielliptic Surfaces over Finite Fields
%J Matematičeskie zametki
%D 2008
%P 273-285
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a8/
%G ru
%F MZM_2008_83_2_a8
S. Yu. Rybakov. Zeta Functions of Bielliptic Surfaces over Finite Fields. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 273-285. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a8/

[1] M. A. Tsfasman, “Nombre de points des surfaces sur un corps fini”, Arithmetic, Ggeometry, and Coding Theory (Luminy, 1993), Walter de Gruyter, Berlin, 1996, 209–224 | MR | Zbl

[2] S. Rybakov, “Zeta functions of conic bundles and Del Pezzo surfaces of degree $4$ over finite fields”, Mosc. Math. J., 5:4 (2005), 919–926 | MR | Zbl

[3] E. Freitag, R. Kiehl, Etale cohomology and the Weil conjecture, With an historical introduction by J. A. Dieudonné, Ergeb. Math. Grenzgeb. (3), 13, Springer-Verlag, Berlin, 1988 | MR | Zbl

[4] A. Weil, Variétes abéliennes et courbes algébraiques, Hermann Cie.,, Paris, 1948 | MR | Zbl

[5] W. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 521–560 | MR | Zbl

[6] W. Waterhouse, J. Milne, “Abelian varieties over finite fields”, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence, RI, 1971, 53–64 | MR | Zbl

[7] M. A. Tsfasman, “Group of points of an elliptic curve over a finite field”, Proc. Ail-Union. Conf. on Number Theory and its Applications, Tbilisi, 1985, 286–287

[8] H.-G. Rück, “A note on elliptic curves over finite fields”, Math. Comp., 49:179 (1987), 301–304 | DOI | MR | Zbl

[9] J. F. Voloch, “A note on elliptic curves over finite fields”, Bull. Soc. Math. France, 116:4 (1988), 455–458 | MR | Zbl

[10] R. Schoof, “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory. Ser. A, 46:2 (1987), 183–211 | DOI | MR | Zbl

[11] E. Bombieri, D. Mumford, “Enriques' classification of surfaces in char. $p$. II”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 23–42 | MR | Zbl

[12] L. Bădescu, Algebraic Surfaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl

[13] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972 | MR | Zbl

[14] K. Matsuki, Introduction to the Mori Program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl

[15] Zh.-P. Serr, Kogomologii Galua, Mir, M., 1968 | MR | Zbl

[16] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[17] D. Mamford, Abelevy mnogoobraziya, Mir, M., 1971 | MR | Zbl