Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 221-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Maslov dequantization allows one to interpret the classical Gräffe–Lobachevski method for calculating the roots of polynomials in dimension one as a homotopy procedure for solving a certain system of tropical equations. As an extension of this analogy to systems of $n$ algebraic equations in dimension $n$, we introduce a tropical system of equations whose solution defines the structure and initial iterations of the homotopy method for calculating all complex roots of a given algebraic system. This method combines the completeness and the rigor of the algebraic-geometrical analysis of roots with the simplicity and the convenience of its implementation, which is typical of local numerical algorithms.
Mots-clés : Maslov's dequantization
Keywords: Gräffe–Lobachevski method, tropical equations, complex roots, tropical surface, amoeba of a surface, spine of an amoeba.
@article{MZM_2008_83_2_a5,
     author = {B. Kh. Kirshtein},
     title = {Maslov {Dequantization} and the {Homotopy} {Method} for {Solving} {Systems} of {Nonlinear} {Algebraic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {221--231},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/}
}
TY  - JOUR
AU  - B. Kh. Kirshtein
TI  - Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 221
EP  - 231
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/
LA  - ru
ID  - MZM_2008_83_2_a5
ER  - 
%0 Journal Article
%A B. Kh. Kirshtein
%T Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations
%J Matematičeskie zametki
%D 2008
%P 221-231
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/
%G ru
%F MZM_2008_83_2_a5
B. Kh. Kirshtein. Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 221-231. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/

[1] V. P. Maslov, Operatornye metody, Mir, M., 1987 | MR | Zbl

[2] B. P. Maslov, V. N. Kolokoltsov, Idempotentnyi analiz i ego primeneniya v optimalnom upravlenii, Nauka, M., 1994 | MR | Zbl

[3] G. L. Litvinov, V. P. Maslov, “Idempotentnaya matematika: printsip sootvetstviya i ego kompyuternye prilozheniya”, UMN, 51:6 (1996), 209–210 | MR | Zbl

[4] G. L. Litvinov, “Dekvantovanie Maslova, idempotentnaya i tropicheskaya matematika: kratkoe vvedenie”, Zapiski nauch. sem. POMI, 326 (2005), 145–182 | MR | Zbl

[5] Idempotent Mathematics and Mathematical Physics, Papers from the International Workshop held in Vienna, February 3–10, 2003, Contemp. Math., 377, eds. G. L. Litvinov, V. P. Maslov, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[6] G. L. Litvinov, G. B. Shpiz, “The dequantization transform and generalized Newton polytopes”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 181–186 | MR | Zbl

[7] J. Richter-Gebert, B. Sturmfels, T. Theobald, “First steps in tropical geometry”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 289–317 | MR | Zbl

[8] D. Speyer, B. Sturmfels, Tropical mathematics, Clay Mathematics Institute Senior Scholar, Park City, Utah, 2004; arXiv: math/0408099

[9] B. M. Verzhbitskii, Osnovy chislennykh metodov, Vyssh. shk., M., 2002

[10] E. Allgower, K. Georg, Numerical Continuation Methods. An Introduction, Springer Ser. Comput. Math., 13, Springer-Verlag, New York, 1990 | MR | Zbl

[11] J. Verschelde, Polynomial homotopies for dense, sparse and determinantal systems, arXiv: math/9907060

[12] A. G. Kushnirenko, “Mnogogranniki Nyutona i chislo reshenii sistemy $k$ uravnenii s $k$ neizvestnymi”, Zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki, UMN, 30:2 (1975), 266–267 | MR

[13] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998 | MR | Zbl

[14] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4 | MR | Zbl

[15] A. G. Khovanskii, “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 56–64 | MR | Zbl

[16] B. Huber, B. Sturmfels, “A polyhedral method for solving sparse polynomial systems”, Math. Comp., 64:212 (1995), 1541–1555 | DOI | MR | Zbl

[17] B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Regional Conf. Ser. in Math., 97, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[18] I. M. Gelfand, M. M. Kapranov, A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[19] M. Passare, H. Rullgard, Amoebas, Monge–Ampere Measures and Triangulations of the Newton Polytope, Res. Rep. Math., 10, Stockholm Univ., Stockholm, 2002

[20] M. Passare, A. Tsikh, “Amoebas: their spines and their contours”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | MR | Zbl

[21] G. Mikhalkin, Amoebas of algebraic varieties and tropical geometry, arXiv: math/0403015 | MR

[22] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151:1 (2000), 45–70 | DOI | MR | Zbl