Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_2_a5, author = {B. Kh. Kirshtein}, title = {Maslov {Dequantization} and the {Homotopy} {Method} for {Solving} {Systems} of {Nonlinear} {Algebraic} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {221--231}, publisher = {mathdoc}, volume = {83}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/} }
TY - JOUR AU - B. Kh. Kirshtein TI - Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations JO - Matematičeskie zametki PY - 2008 SP - 221 EP - 231 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/ LA - ru ID - MZM_2008_83_2_a5 ER -
B. Kh. Kirshtein. Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 221-231. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/
[1] V. P. Maslov, Operatornye metody, Mir, M., 1987 | MR | Zbl
[2] B. P. Maslov, V. N. Kolokoltsov, Idempotentnyi analiz i ego primeneniya v optimalnom upravlenii, Nauka, M., 1994 | MR | Zbl
[3] G. L. Litvinov, V. P. Maslov, “Idempotentnaya matematika: printsip sootvetstviya i ego kompyuternye prilozheniya”, UMN, 51:6 (1996), 209–210 | MR | Zbl
[4] G. L. Litvinov, “Dekvantovanie Maslova, idempotentnaya i tropicheskaya matematika: kratkoe vvedenie”, Zapiski nauch. sem. POMI, 326 (2005), 145–182 | MR | Zbl
[5] Idempotent Mathematics and Mathematical Physics, Papers from the International Workshop held in Vienna, February 3–10, 2003, Contemp. Math., 377, eds. G. L. Litvinov, V. P. Maslov, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[6] G. L. Litvinov, G. B. Shpiz, “The dequantization transform and generalized Newton polytopes”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 181–186 | MR | Zbl
[7] J. Richter-Gebert, B. Sturmfels, T. Theobald, “First steps in tropical geometry”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 289–317 | MR | Zbl
[8] D. Speyer, B. Sturmfels, Tropical mathematics, Clay Mathematics Institute Senior Scholar, Park City, Utah, 2004; arXiv: math/0408099
[9] B. M. Verzhbitskii, Osnovy chislennykh metodov, Vyssh. shk., M., 2002
[10] E. Allgower, K. Georg, Numerical Continuation Methods. An Introduction, Springer Ser. Comput. Math., 13, Springer-Verlag, New York, 1990 | MR | Zbl
[11] J. Verschelde, Polynomial homotopies for dense, sparse and determinantal systems, arXiv: math/9907060
[12] A. G. Kushnirenko, “Mnogogranniki Nyutona i chislo reshenii sistemy $k$ uravnenii s $k$ neizvestnymi”, Zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki, UMN, 30:2 (1975), 266–267 | MR
[13] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998 | MR | Zbl
[14] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4 | MR | Zbl
[15] A. G. Khovanskii, “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 56–64 | MR | Zbl
[16] B. Huber, B. Sturmfels, “A polyhedral method for solving sparse polynomial systems”, Math. Comp., 64:212 (1995), 1541–1555 | DOI | MR | Zbl
[17] B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Regional Conf. Ser. in Math., 97, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[18] I. M. Gelfand, M. M. Kapranov, A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl
[19] M. Passare, H. Rullgard, Amoebas, Monge–Ampere Measures and Triangulations of the Newton Polytope, Res. Rep. Math., 10, Stockholm Univ., Stockholm, 2002
[20] M. Passare, A. Tsikh, “Amoebas: their spines and their contours”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | MR | Zbl
[21] G. Mikhalkin, Amoebas of algebraic varieties and tropical geometry, arXiv: math/0403015 | MR
[22] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151:1 (2000), 45–70 | DOI | MR | Zbl