Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 221-231
Voir la notice de l'article provenant de la source Math-Net.Ru
The Maslov dequantization allows one to interpret the classical Gräffe–Lobachevski method for calculating the roots of polynomials in dimension one as a homotopy procedure for solving a certain system of tropical equations. As an extension of this analogy to systems of $n$ algebraic equations in dimension $n$, we introduce a tropical system of equations whose solution defines the structure and initial iterations of the homotopy method for calculating all complex roots of a given algebraic system. This method combines the completeness and the rigor of the algebraic-geometrical analysis of roots with the simplicity and the convenience of its implementation, which is typical of local numerical algorithms.
Mots-clés :
Maslov's dequantization
Keywords: Gräffe–Lobachevski method, tropical equations, complex roots, tropical surface, amoeba of a surface, spine of an amoeba.
Keywords: Gräffe–Lobachevski method, tropical equations, complex roots, tropical surface, amoeba of a surface, spine of an amoeba.
@article{MZM_2008_83_2_a5,
author = {B. Kh. Kirshtein},
title = {Maslov {Dequantization} and the {Homotopy} {Method} for {Solving} {Systems} of {Nonlinear} {Algebraic} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {221--231},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/}
}
TY - JOUR AU - B. Kh. Kirshtein TI - Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations JO - Matematičeskie zametki PY - 2008 SP - 221 EP - 231 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/ LA - ru ID - MZM_2008_83_2_a5 ER -
B. Kh. Kirshtein. Maslov Dequantization and the Homotopy Method for Solving Systems of Nonlinear Algebraic Equations. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 221-231. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a5/