Comonotone Approximation of Periodic Functions
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 199-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a continuous $2\pi$-periodic function $f$ on the real axis $\mathbb R$ changes its monotonicity at different ordered fixed points $y_i\in [-\pi,\pi)$, $i=1,\dots,2s$, $s\in\mathbb N$. In other words, there is a set $Y:=\{y_i\}_{i\in\mathbb Z}$ of points $y_i=y_{i+2s}+2\pi$ on $\mathbb R$ such that, on $[y_i,y_{i-1}]$, $f$ is nondecreasing if $i$ is odd and nonincreasing if $i$ is even. For each $n\ge N(Y)$, we construct a trigonometric polynomial $P_n$ of order $\le n$ changing its monotonicity at the same points $y_i\in Y$ as $f$ and such that $$ \|f-P_n\|\le c(s)\omega_2\biggl(f,\frac{\pi}{n}\biggr), $$ where $N(Y)$ is a constant depending only on $Y$, $c(s)$ is a constant depending only on $s$, $\omega_2(f,\,\cdot\,)$ is the modulus of continuity of second order of the function $f$, and $\|\cdot\|$ is the $\max$-norm.
Keywords: $2\pi$-periodic function, comonotone approximation, trigonometric polynomial, Jackson kernel, Whitney's inequality.
@article{MZM_2008_83_2_a3,
     author = {G. A. Dzyubenko and M. G. Pleshakov},
     title = {Comonotone {Approximation} of {Periodic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/}
}
TY  - JOUR
AU  - G. A. Dzyubenko
AU  - M. G. Pleshakov
TI  - Comonotone Approximation of Periodic Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 199
EP  - 209
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/
LA  - ru
ID  - MZM_2008_83_2_a3
ER  - 
%0 Journal Article
%A G. A. Dzyubenko
%A M. G. Pleshakov
%T Comonotone Approximation of Periodic Functions
%J Matematičeskie zametki
%D 2008
%P 199-209
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/
%G ru
%F MZM_2008_83_2_a3
G. A. Dzyubenko; M. G. Pleshakov. Comonotone Approximation of Periodic Functions. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 199-209. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/

[1] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[2] M. G. Pleshakov, “Comonotone Jackson's inequality”, J. Approx. Theory, 99:2 (1999), 409–421 | DOI | MR | Zbl

[3] M. G. Pleshakov, Komonotonnoe priblizhenie periodicheskikh funktsii klassov Soboleva, Dis. $\dots$ kand. fiz.-matem. nauk, SGU, Saratov, 1997

[4] A. S. Shvedov, “Komonotonnoe priblizhenie funktsii mnogochlenami”, Dokl. AN SSSR, 250:1 (1980), 39–42 | MR | Zbl

[5] A. S. Shvedov, “Poryadki kopriblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. zametki, 29:1 (1981), 117–130 | MR | Zbl

[6] R. A. DeVore, D. Leviatan, I. A Shevchuk, “Approximation of monotone functions: a counter example”, Curves and Surfaces With Application in CAGD (Chamonix– Mont-Blanc, 1996), Vanderbilt Univ. Press, Nashville, TN, 1997, 95–102 | MR | Zbl

[7] G. G. Lorentz, K. L. Zeller, “Degree of approximation by monotone polynomials. I”, J. Approx. Theory, 1:4 (1968), 501–504 | DOI | MR | Zbl

[8] A. S. Shvedov, “Kopriblizhenie kusochno-monotonnykh funktsii mnogochlenami”, Matem. zametki, 30 (1981), 839–846 | MR | Zbl

[9] H. Whitney, “On functions with bounded $n$-th differences”, J. Math. Pures Appl. (9), 36 (1957), 67–95 | MR | Zbl

[10] P. A. Popov, “Analog nerivnosti Dzheksona dlya koopuklogo nablizhennya periodichnikh funktsii”, Ukr. matem. zhurn., 53:7 (2001), 919–928 | MR | Zbl

[11] P. A. Popov, M. G. Pleshakov, “Znakosokhranyayuschee priblizhenie periodicheskikh funktsii”, Ukr. matem. zhurn., 55:8 (2003), 1087–1098 | MR | Zbl

[12] G. A. Dzyubenko, J. Gilewicz, I. A. Shevchuk, “Piecewise monotone pointwise approximation”, Constr. Approx., 14:3 (1998), 311–348 | DOI | MR | Zbl

[13] J. Gilewicz, I. A. Shevchuk, “Komonotonnoe priblizhenie”, Fundament. i prikl. matem., 2:2 (1996), 319–363 | MR | Zbl