Comonotone Approximation of Periodic Functions
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 199-209

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a continuous $2\pi$-periodic function $f$ on the real axis $\mathbb R$ changes its monotonicity at different ordered fixed points $y_i\in [-\pi,\pi)$, $i=1,\dots,2s$, $s\in\mathbb N$. In other words, there is a set $Y:=\{y_i\}_{i\in\mathbb Z}$ of points $y_i=y_{i+2s}+2\pi$ on $\mathbb R$ such that, on $[y_i,y_{i-1}]$, $f$ is nondecreasing if $i$ is odd and nonincreasing if $i$ is even. For each $n\ge N(Y)$, we construct a trigonometric polynomial $P_n$ of order $\le n$ changing its monotonicity at the same points $y_i\in Y$ as $f$ and such that $$ \|f-P_n\|\le c(s)\omega_2\biggl(f,\frac{\pi}{n}\biggr), $$ where $N(Y)$ is a constant depending only on $Y$, $c(s)$ is a constant depending only on $s$, $\omega_2(f,\,\cdot\,)$ is the modulus of continuity of second order of the function $f$, and $\|\cdot\|$ is the $\max$-norm.
Keywords: $2\pi$-periodic function, comonotone approximation, trigonometric polynomial, Jackson kernel, Whitney's inequality.
@article{MZM_2008_83_2_a3,
     author = {G. A. Dzyubenko and M. G. Pleshakov},
     title = {Comonotone {Approximation} of {Periodic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/}
}
TY  - JOUR
AU  - G. A. Dzyubenko
AU  - M. G. Pleshakov
TI  - Comonotone Approximation of Periodic Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 199
EP  - 209
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/
LA  - ru
ID  - MZM_2008_83_2_a3
ER  - 
%0 Journal Article
%A G. A. Dzyubenko
%A M. G. Pleshakov
%T Comonotone Approximation of Periodic Functions
%J Matematičeskie zametki
%D 2008
%P 199-209
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/
%G ru
%F MZM_2008_83_2_a3
G. A. Dzyubenko; M. G. Pleshakov. Comonotone Approximation of Periodic Functions. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 199-209. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a3/