On the Structure of the Essential Spectrum of a Model Many-Body Hamiltonian
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 86-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the essential spectrum of a model lattice Hamiltonian describing a system with fluctuating number of particles ($0\le n\le2$) in the quasimomentum representation. The spectral properties are described in terms of the boundary values of a function of a complex variable, whose meaning is that of the kernel of the Schur complement $$ H_{11}-z-H_{12}(H_{22}-z)^{-1}H_{12}^*. $$
Keywords: Schur complement, quasimomentum representation, many-body problem, fluctuating number of particles, essential spectrum.
@article{MZM_2008_83_1_a9,
     author = {T. H. Rasulov},
     title = {On the {Structure} of the {Essential} {Spectrum} of a {Model} {Many-Body} {Hamiltonian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a9/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - On the Structure of the Essential Spectrum of a Model Many-Body Hamiltonian
JO  - Matematičeskie zametki
PY  - 2008
SP  - 86
EP  - 94
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a9/
LA  - ru
ID  - MZM_2008_83_1_a9
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T On the Structure of the Essential Spectrum of a Model Many-Body Hamiltonian
%J Matematičeskie zametki
%D 2008
%P 86-94
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a9/
%G ru
%F MZM_2008_83_1_a9
T. H. Rasulov. On the Structure of the Essential Spectrum of a Model Many-Body Hamiltonian. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 86-94. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a9/

[1] Yu. A. Izyumov, M. V. Medvedev, “Magnitnyi pomeron v ferromagnitnom kristale”, ZhETF, 59:2 (1970), 553–560

[2] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in statistical and theoretical physics, Amer. Math. Soc. Transl. Ser. 2, 177, Amer. Math. Soc., Providence, RI, 1996, 159–193 | MR | Zbl

[3] Yu. V. Zhukov, R. A. Minlos, “Spektr i rasseyanie v modeli “spin-bozon” s ne bolee chem tremya fotonami”, TMF, 103:1 (1995), 63–81 | MR | Zbl

[4] D. Mattis, “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[5] E. Lieb, “Two theorems on the Hubbard model”, Phys. Rev. Lett., 62:10 (1989), 1201–1204 | DOI | MR

[6] A. J. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrodinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR | Zbl

[7] S. N. Lakaev, “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | MR | Zbl

[8] S. N. Lakaev, “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, TMF, 89:1 (1991), 94–104 | MR

[9] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 4: Analiz operatorov, Mir, M., 1982 | MR | Zbl

[10] S. N. Lakaev, T. Kh. Rasulov, “Model v teorii vozmuschenii suschestvennogo spektra mnogochastichnykh operatorov”, Matem. zametki, 73:4 (2003), 556–564 | MR | Zbl

[11] S. N. Lakaev, T. Kh. Rasulov, “Ob effekte Efimova v modeli teorii vozmuschenii suschestvennogo spektra”, Funkts. analiz i ego pril., 37:1 (2003), 81–84 | MR | Zbl

[12] Zh. I. Abdullaev, S. N. Lakaev, “On the spectral properties of the matrix-valued Friedrichs model”, Many-particle Hamiltonians: spectra and scattering, Adv. Sov. Math., Amer. Math. Soc., Providence, RI, 1991, 1–37 | MR | Zbl

[13] S. N. Lakaev, “Nekotorye spektralnye svoistva obobschennoi modeli Fridrikhsa”, Tr. sem. im. I. G. Petrovskogo, 11 (1986), 210–238 | MR | Zbl