Application of Maslov's Formula to Finding an Asymptotic Solution to an Elastic Deformation Problem
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 50-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a scheme of bifurcation analysis of equilibrium configurations of a weakly inhomogeneous elastic beam on an elastic base under the assumption of two-mode degeneracy; this scheme generalizes the Darinskii–Sapronov scheme developed earlier for the case of a homogeneous beam. The consideration of an inhomogeneous beam requires replacing the condition that the pair of eigenvectors of the operator $\mathscr A$ from the linear part of the equation (at zero) is constant by the condition of the existence of a pair of vectors smoothly depending on the parameters whose linear hull is invariant with respect to $\mathscr A$. It is shown that such a pair is sufficient for the construction of the principal part of the key function and for analyzing the branching of the equilibrium configurations of the beam. The construction of the required pair of vectors is based on a formula for the orthogonal projection onto the root subspace of $\mathscr A$ (from the theory of perturbations of self-adjoint operators in the sense of Maslov). The effect of the type of inhomogeneity of the beam on the form of its deflection is studied.
Keywords: elastic deformation, inhomogeneous elastic beam, bifurcation analysis, Maslov's projection-operator formula, energy functional, bifurcation diagram
Mots-clés : orthogonal projection.
@article{MZM_2008_83_1_a5,
     author = {D. V. Kostin},
     title = {Application of {Maslov's} {Formula} to {Finding} an {Asymptotic} {Solution} to an {Elastic} {Deformation} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a5/}
}
TY  - JOUR
AU  - D. V. Kostin
TI  - Application of Maslov's Formula to Finding an Asymptotic Solution to an Elastic Deformation Problem
JO  - Matematičeskie zametki
PY  - 2008
SP  - 50
EP  - 60
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a5/
LA  - ru
ID  - MZM_2008_83_1_a5
ER  - 
%0 Journal Article
%A D. V. Kostin
%T Application of Maslov's Formula to Finding an Asymptotic Solution to an Elastic Deformation Problem
%J Matematičeskie zametki
%D 2008
%P 50-60
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a5/
%G ru
%F MZM_2008_83_1_a5
D. V. Kostin. Application of Maslov's Formula to Finding an Asymptotic Solution to an Elastic Deformation Problem. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 50-60. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a5/

[1] B. M. Darinskii, Yu. I. Sapronov, “O dvukhmodovykh bifurkatsiyakh reshenii odnoi variatsionnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Pontryaginskie chteniya, XI: Sb. trudov. Chast 1, VGU, Voronezh, 2000, 57–64

[2] B. M. Darinskii, Yu. I. Sapronov, S. L. Tsarev, “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovrem. matem. Fundam. napr., 12 (2004), 3–140 | MR | Zbl

[3] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR | Zbl

[4] D. V. Kostin, “Ortoproektor teorii vozmuscheniya lineinykh operatorov i bifurkatsii ravnovesii slabo neodnorodnoi uprugoi balki”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina, VGU, Voronezh, 2006, 106–113

[5] Yu. O. Mitropolskii, B. I. Moseenkov, Doslidzhennya kolivan v sistemakh z rozpodilenimi parametrami (asimptotichni metodi), Vid-vo Ki\"ivckogo un-tu, Ki\"iv, 1961

[6] J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamiks and Chaos, Geometrical methods for engineers and scientists, John Wiley Sons, Chichester, 1986 | MR | Zbl

[7] B. S. Bardin, S. D. Furta, “Lokalnaya teoriya suschestvovaniya periodicheskikh volnovykh dvizhenii beskonechnoi balki na nelineino uprugom osnovanii”, Aktualnye problemy klassicheskoi i nebesnoi mekhaniki, Elf, M., 1998, 13–22

[8] Yu. A. Izyumov, V. I. Syromyatnikov, Fazovye perekhody i simmetriya kristallov, Nauka, M., 1984

[9] M. A. Krasnoselskii, N. A. Bobylev, E. M. Mukhamadiev, “Ob odnoi skheme issledovaniya vyrozhdennykh ekstremalei funktsionalov klassicheskogo variatsionnogo ischisleniya”, Dokl. AN SSSR, 240:3 (1978), 530–533 | MR | Zbl

[10] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982 | MR | Zbl

[11] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl | Zbl