On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 32-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct, for each $n\in\mathbb N$, a compact set $X\subset\mathbb C$ (depending on $n$) such that the set of all polyanalytic polynomials of order $n$ is not dense in $\mathrm C(X)$, but the set of all polyanalytic polynomials of order $2n$ is already dense in $\mathrm C(X)$.
Keywords: polyanalytic function, uniform approximation, holomorphic function, Schwartz function, Borel measure
Mots-clés : polyanalytic polynomial, Vandermonde matrix.
@article{MZM_2008_83_1_a3,
     author = {J. J. Carmona and K. Yu. Fedorovskiy},
     title = {On the {Dependence} of {Uniform} {Polyanalytic} {Polynomial} {Approximations} on the {Order} of {Polyanalyticity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {32--38},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/}
}
TY  - JOUR
AU  - J. J. Carmona
AU  - K. Yu. Fedorovskiy
TI  - On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity
JO  - Matematičeskie zametki
PY  - 2008
SP  - 32
EP  - 38
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/
LA  - ru
ID  - MZM_2008_83_1_a3
ER  - 
%0 Journal Article
%A J. J. Carmona
%A K. Yu. Fedorovskiy
%T On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity
%J Matematičeskie zametki
%D 2008
%P 32-38
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/
%G ru
%F MZM_2008_83_1_a3
J. J. Carmona; K. Yu. Fedorovskiy. On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 32-38. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/

[1] X. X. Karmona, P. V. Paramonov, K. Yu. Fedorovskii, “O ravnomernoi approksimatsii funktsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Matem. sb., 193:10 (2002), 75–98 | MR | Zbl

[2] K. Yu. Fedorovskii, “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl

[3] K. Yu. Fedorovskii, “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Kompleksnyi analiz i prilozheniya: Sbornik statei, Tr. MIAN, 253, 2006, 204–213 | MR

[4] A. Buave, P. M. Gote, P. V. Paramonov, “O ravnomernoi approksimatsii $n$-analiticheskimi funktsiyami na zamknutykh mnozhestvakh v $\mathbb C$”, Izv. RAN. Ser. matem., 68:3 (2004), 15–28 | MR | Zbl

[5] J. J. Carmona, K. Yu. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected Topics in Complex Analysis, Oper. Theory Adv. Appl., 158, Birkhäuser Verlag, Basel, 2005, 109–130 | DOI | MR | Zbl

[6] P. Davis, The Schwarz function and its applications, Carus Math. Monogr., 17, Math. Assoc. America, Washington, DC, 1974 | MR | Zbl