On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 32-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct, for each $n\in\mathbb N$, a compact set $X\subset\mathbb C$ (depending on $n$) such that the set of all polyanalytic polynomials of order $n$ is not dense in $\mathrm C(X)$, but the set of all polyanalytic polynomials of order $2n$ is already dense in $\mathrm C(X)$.
Keywords: polyanalytic function, uniform approximation, holomorphic function, Schwartz function, Borel measure
Mots-clés : polyanalytic polynomial, Vandermonde matrix.
@article{MZM_2008_83_1_a3,
     author = {J. J. Carmona and K. Yu. Fedorovskiy},
     title = {On the {Dependence} of {Uniform} {Polyanalytic} {Polynomial} {Approximations} on the {Order} of {Polyanalyticity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {32--38},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/}
}
TY  - JOUR
AU  - J. J. Carmona
AU  - K. Yu. Fedorovskiy
TI  - On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity
JO  - Matematičeskie zametki
PY  - 2008
SP  - 32
EP  - 38
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/
LA  - ru
ID  - MZM_2008_83_1_a3
ER  - 
%0 Journal Article
%A J. J. Carmona
%A K. Yu. Fedorovskiy
%T On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity
%J Matematičeskie zametki
%D 2008
%P 32-38
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/
%G ru
%F MZM_2008_83_1_a3
J. J. Carmona; K. Yu. Fedorovskiy. On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 32-38. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/