Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_1_a3, author = {J. J. Carmona and K. Yu. Fedorovskiy}, title = {On the {Dependence} of {Uniform} {Polyanalytic} {Polynomial} {Approximations} on the {Order} of {Polyanalyticity}}, journal = {Matemati\v{c}eskie zametki}, pages = {32--38}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/} }
TY - JOUR AU - J. J. Carmona AU - K. Yu. Fedorovskiy TI - On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity JO - Matematičeskie zametki PY - 2008 SP - 32 EP - 38 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/ LA - ru ID - MZM_2008_83_1_a3 ER -
%0 Journal Article %A J. J. Carmona %A K. Yu. Fedorovskiy %T On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity %J Matematičeskie zametki %D 2008 %P 32-38 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/ %G ru %F MZM_2008_83_1_a3
J. J. Carmona; K. Yu. Fedorovskiy. On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 32-38. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/
[1] X. X. Karmona, P. V. Paramonov, K. Yu. Fedorovskii, “O ravnomernoi approksimatsii funktsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Matem. sb., 193:10 (2002), 75–98 | MR | Zbl
[2] K. Yu. Fedorovskii, “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl
[3] K. Yu. Fedorovskii, “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Kompleksnyi analiz i prilozheniya: Sbornik statei, Tr. MIAN, 253, 2006, 204–213 | MR
[4] A. Buave, P. M. Gote, P. V. Paramonov, “O ravnomernoi approksimatsii $n$-analiticheskimi funktsiyami na zamknutykh mnozhestvakh v $\mathbb C$”, Izv. RAN. Ser. matem., 68:3 (2004), 15–28 | MR | Zbl
[5] J. J. Carmona, K. Yu. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected Topics in Complex Analysis, Oper. Theory Adv. Appl., 158, Birkhäuser Verlag, Basel, 2005, 109–130 | DOI | MR | Zbl
[6] P. Davis, The Schwarz function and its applications, Carus Math. Monogr., 17, Math. Assoc. America, Washington, DC, 1974 | MR | Zbl