On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 32-38
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct, for each $n\in\mathbb N$, a compact set $X\subset\mathbb C$ (depending on $n$) such that the set of all polyanalytic polynomials of order $n$ is not dense in $\mathrm C(X)$, but the set of all polyanalytic polynomials of order $2n$ is already dense in $\mathrm C(X)$.
Keywords:
polyanalytic function, uniform approximation, holomorphic function, Schwartz function, Borel measure
Mots-clés : polyanalytic polynomial, Vandermonde matrix.
Mots-clés : polyanalytic polynomial, Vandermonde matrix.
@article{MZM_2008_83_1_a3,
author = {J. J. Carmona and K. Yu. Fedorovskiy},
title = {On the {Dependence} of {Uniform} {Polyanalytic} {Polynomial} {Approximations} on the {Order} of {Polyanalyticity}},
journal = {Matemati\v{c}eskie zametki},
pages = {32--38},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/}
}
TY - JOUR AU - J. J. Carmona AU - K. Yu. Fedorovskiy TI - On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity JO - Matematičeskie zametki PY - 2008 SP - 32 EP - 38 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/ LA - ru ID - MZM_2008_83_1_a3 ER -
%0 Journal Article %A J. J. Carmona %A K. Yu. Fedorovskiy %T On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity %J Matematičeskie zametki %D 2008 %P 32-38 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/ %G ru %F MZM_2008_83_1_a3
J. J. Carmona; K. Yu. Fedorovskiy. On the Dependence of Uniform Polyanalytic Polynomial Approximations on the Order of Polyanalyticity. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 32-38. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a3/