On Asymptotic Properties of Interpolation Polynomials
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 129-138

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the asymptotic properties of the polynomials $P_n(z)=P_n(z;f)$, corresponding to an interpolation table $\alpha\subset E$, where $E$ is a bounded continuum in the complex plane with a connected complement, the table $\alpha$ satisfies the Kakehashi condition, and $f$ is an arbitrary function holomorphic on $E$. In particular, for zeros of such polynomials, we obtain a generalization of the classical Jentzsch–Szegő theorem on the distribution of zeros of partial sums of Taylor series.
Mots-clés : interpolation polynomial, Hermite interpolation formula, Cauchy–Hadamard formula.
Keywords: Taylor series, holomorphic function
@article{MZM_2008_83_1_a13,
     author = {D. V. Khristoforov},
     title = {On {Asymptotic} {Properties} of {Interpolation} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/}
}
TY  - JOUR
AU  - D. V. Khristoforov
TI  - On Asymptotic Properties of Interpolation Polynomials
JO  - Matematičeskie zametki
PY  - 2008
SP  - 129
EP  - 138
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/
LA  - ru
ID  - MZM_2008_83_1_a13
ER  - 
%0 Journal Article
%A D. V. Khristoforov
%T On Asymptotic Properties of Interpolation Polynomials
%J Matematičeskie zametki
%D 2008
%P 129-138
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/
%G ru
%F MZM_2008_83_1_a13
D. V. Khristoforov. On Asymptotic Properties of Interpolation Polynomials. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 129-138. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/