On Asymptotic Properties of Interpolation Polynomials
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 129-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the asymptotic properties of the polynomials $P_n(z)=P_n(z;f)$, corresponding to an interpolation table $\alpha\subset E$, where $E$ is a bounded continuum in the complex plane with a connected complement, the table $\alpha$ satisfies the Kakehashi condition, and $f$ is an arbitrary function holomorphic on $E$. In particular, for zeros of such polynomials, we obtain a generalization of the classical Jentzsch–Szegő theorem on the distribution of zeros of partial sums of Taylor series.
Mots-clés : interpolation polynomial, Hermite interpolation formula, Cauchy–Hadamard formula.
Keywords: Taylor series, holomorphic function
@article{MZM_2008_83_1_a13,
     author = {D. V. Khristoforov},
     title = {On {Asymptotic} {Properties} of {Interpolation} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/}
}
TY  - JOUR
AU  - D. V. Khristoforov
TI  - On Asymptotic Properties of Interpolation Polynomials
JO  - Matematičeskie zametki
PY  - 2008
SP  - 129
EP  - 138
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/
LA  - ru
ID  - MZM_2008_83_1_a13
ER  - 
%0 Journal Article
%A D. V. Khristoforov
%T On Asymptotic Properties of Interpolation Polynomials
%J Matematičeskie zametki
%D 2008
%P 129-138
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/
%G ru
%F MZM_2008_83_1_a13
D. V. Khristoforov. On Asymptotic Properties of Interpolation Polynomials. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 129-138. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a13/

[1] T. Kakehashi, “The decomposition of coefficients of power-series and the divergence of interpolation polynomials”, Proc. Japan Acad., 31:8 (1955), 517–523 | DOI | MR | Zbl

[2] T. Kakehashi, “On interpolation of analytic functions. II. Fundamental results”, Proc. Japan Acad., 32 (1956), 713–718 | DOI | MR | Zbl

[3] G. Szegő, “Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören”, Math. Z., 9:3–4 (1921), 218–270 | DOI | MR | Zbl

[4] Dzh. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR | Zbl

[5] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1964 | MR | Zbl

[6] A. A. Gonchar, “Polyusy strok tablitsy Pade i meromorfnoe prodolzhenie funktsii”, Matem. sb., 115:4 (1981), 590–613 | MR | Zbl

[7] S. P. Suetin, “O polyusakh $m$-i stroki tablitsy Pade”, Matem. sb., 120:4 (1983), 500–504 | MR | Zbl

[8] Le Ba Kkhan Chin, “Obratnye teoremy dlya mnogotochechnykh approksimatsii Pade”, Matem. sb., 181:10 (1990), 1306–1319 | MR | Zbl

[9] V. I. Buslaev, “Sootnosheniya dlya koeffitsientov i osobye tochki funktsii”, Matem. sb., 131:3 (1986), 357–384 | MR | Zbl

[10] Dzh. Beiker, P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR | Zbl

[11] R. Jentzsch, “Untersuchungen zur Theorie der Folgen analytischer Funktionen”, Acta Math., 41:1 (1916), 219–251 | DOI | MR

[12] G. Szegő, “Über die Nullstellen von Polynomen, die in einem Kreise gleichmassig konvergieren”, Sitzungsber. Berl. Math. Ges., 21 (1922), 59–64 | Zbl

[13] V. I. Buslaev, “O teoreme Fabri ob otnoshenii dlya ortogonalnykh ryadov”, Kompleksnyi analiz i prilozheniya: Sbornik statei, Tr. MIAN, 253, 2006, 14–29 | MR

[14] L. Carleson, “Mergelyan's theorem on uniform polynomial approximation”, Math. Scand., 15 (1964), 167–175 | MR | Zbl