Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 107-118
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a generalization of the cascade method of Laplace integration to the case of linear hyperbolic systems of equations. On the basis of this generalization, we prove that the system of equations with vanishing product of Laplace invariants has a complete set of solutions depending on arbitrary functions.
Keywords:
linear hyperbolic equation, cascade integration method, Laplace integration, differential substitution.
Mots-clés : Laplace invariant
Mots-clés : Laplace invariant
@article{MZM_2008_83_1_a11,
author = {S. Ya. Startsev},
title = {Cascade {Method} of {Laplace} {Integration} for {Linear} {Hyperbolic} {Systems} of {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {107--118},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a11/}
}
S. Ya. Startsev. Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 107-118. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a11/