Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 107-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a generalization of the cascade method of Laplace integration to the case of linear hyperbolic systems of equations. On the basis of this generalization, we prove that the system of equations with vanishing product of Laplace invariants has a complete set of solutions depending on arbitrary functions.
Keywords: linear hyperbolic equation, cascade integration method, Laplace integration, differential substitution.
Mots-clés : Laplace invariant
@article{MZM_2008_83_1_a11,
     author = {S. Ya. Startsev},
     title = {Cascade {Method} of {Laplace} {Integration} for {Linear} {Hyperbolic} {Systems} of {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {107--118},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a11/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 107
EP  - 118
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a11/
LA  - ru
ID  - MZM_2008_83_1_a11
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations
%J Matematičeskie zametki
%D 2008
%P 107-118
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a11/
%G ru
%F MZM_2008_83_1_a11
S. Ya. Startsev. Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 107-118. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a11/

[1] G. Darboux, Leçons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, v. 2, Gauthier-Villars, Paris, 1915 | MR | Zbl

[2] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, v. 1, Hermann, Paris, 1896 ; v. 2, Hermann, Paris, 1898 | Zbl | Zbl

[3] F. Trikomi, Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957 | MR | Zbl

[4] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–106 | MR | Zbl

[5] A. V. Zhiber, V. V. Sokolov, S. Ya. Startsev, “Nelineinye giperbolicheskie sistemy uravnenii liuvillevskogo tipa”, Tikhonov i sovremennaya matematika: Funktsionalnyi analiz i differentsialnye uravneniya (Mezhdunarodnaya konferentsiya, Moskva, MGU, 19–25 iyulya 2006 g.), Izdatelskii otdel f-ta VMiK MGU im. M. V. Lomonosova, M., 2006, 305–306

[6] S. Ya. Startsev, “Ob invariantakh Laplasa sistem giperbolicheskikh uravnenii”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya, 3, In-t matematiki s VTs RAN, Ufa, 1996, 144–154

[7] A. V. Zhiber, S. Ya. Startsev, “Integraly, resheniya i suschestvovanie preobrazovanii Laplasa lineinoi giperbolicheskoi sistemy uravnenii”, Matem. zametki, 74:6 (2003), 848–857 | MR | Zbl

[8] A. M. Gureva, A. V. Zhiber, “Invarianty Laplasa dvumerizovannykh otkrytykh tsepochek Tody”, TMF, 138:3 (2004), 401–421 | MR

[9] S. P. Tsarev, Generalized Laplace transformations and integration of hyperbolic systems of linear partial differential equations, arXiv: cs/0501030 | MR