Two Orientations
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 95-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

All trivializations of an Euclidean line bundle $\pi\colon\mathscr R\to B$ over a connected base $B$ split in two classes which can be naturally named orientations of $\pi$. In the case of an orienting sheaf of a manifold or a vector bundle, they admit a natural interpretation as orientations of these objects. This approach establishes an extension of standard classical constructions to all manifolds and vector bundles independently of orientability restrictions in the usual sense.
Mots-clés : orientation, structure group
Keywords: orientability, vector bundle, line bundle, orienting sheaf, twofold covering, cohomology class.
@article{MZM_2008_83_1_a10,
     author = {E. G. Sklyarenko},
     title = {Two {Orientations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a10/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Two Orientations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 95
EP  - 106
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a10/
LA  - ru
ID  - MZM_2008_83_1_a10
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Two Orientations
%J Matematičeskie zametki
%D 2008
%P 95-106
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a10/
%G ru
%F MZM_2008_83_1_a10
E. G. Sklyarenko. Two Orientations. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 95-106. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a10/

[1] R. Bott, L. V. Tu, Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[2] Dzh. de Ram, Differentsiruemye mnogoobraziya, IL, M., 1956 | MR | Zbl

[3] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[4] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR | Zbl

[5] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. I, Nauka, M., 1981 | MR | Zbl

[6] G. E. Bredon, Teoriya puchkov, Nauka, M., 1988 | MR | Zbl

[7] E. G. Sklyarenko, “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 831–843 | MR | Zbl

[8] G. E. Bredon, Sheaf Theory, Grad. Texts in Math., 170, Springer-Verlag, New York, 1997 | MR | Zbl

[9] E. G. Sklyarenko, “Gomologii i kogomologii obschikh prostranstv”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 50, VINITI, M., 1989, 129–266 | MR | Zbl

[10] A. Dold, Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR | Zbl

[11] P. Olum, “Mappings of manifolds and the notion of degree”, Ann. of Math. (2), 58:3 (1953), 458–480 | DOI | MR | Zbl

[12] R. F. Brown, H. Schirmer, “Nielsen Root Theory and Hopf Degree Theory”, Pacific J. Math., 198:1 (2001), 49–80 | MR | Zbl

[13] R. B. S. Brooks, R. F. Brown, H. Schirmer, “The absolute degree and the Nielsen root number of compositions and Cartesian products of maps”, Topology Appl., 116:1 (2001), 5–27 | DOI | MR | Zbl

[14] H. Hopf, “Zur Topologie der Abbildungen von Mannigfaltigkeiten. II: Klasseninvarianten von Abbildungen”, Math. Ann., 102:1 (1930), 562–623 | DOI | MR | Zbl

[15] D. B. A. Epstein, “The degree of a map”, Proc. London Math. Soc. (3), 16 (1966), 369–383 | DOI | MR | Zbl