Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 3-13
Voir la notice de l'article provenant de la source Math-Net.Ru
A priori estimates of the solution to the Dirichlet problem and of its first derivatives in terms of weighted Lebesgue norms are obtained for linear and quasilinear equations with degeneracy from $A_p$ Muckenhoupt classes.
Mots-clés :
elliptic equation of divergence form, Lebesgue norm, Lebesgue measure
Keywords: Dirichlet problem, Lipschitz condition, Hölder's inequality.
Keywords: Dirichlet problem, Lipschitz condition, Hölder's inequality.
@article{MZM_2008_83_1_a0,
author = {R. A. Amanov and F. I. Mamedov},
title = {Regularity of the {Solutions} of {Degenerate} {Elliptic} {Equations} in {Divergent} {Form}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--13},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/}
}
TY - JOUR AU - R. A. Amanov AU - F. I. Mamedov TI - Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form JO - Matematičeskie zametki PY - 2008 SP - 3 EP - 13 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/ LA - ru ID - MZM_2008_83_1_a0 ER -
R. A. Amanov; F. I. Mamedov. Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/