Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

A priori estimates of the solution to the Dirichlet problem and of its first derivatives in terms of weighted Lebesgue norms are obtained for linear and quasilinear equations with degeneracy from $A_p$ Muckenhoupt classes.
Mots-clés : elliptic equation of divergence form, Lebesgue norm, Lebesgue measure
Keywords: Dirichlet problem, Lipschitz condition, Hölder's inequality.
@article{MZM_2008_83_1_a0,
     author = {R. A. Amanov and F. I. Mamedov},
     title = {Regularity of the {Solutions} of {Degenerate} {Elliptic} {Equations} in {Divergent} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/}
}
TY  - JOUR
AU  - R. A. Amanov
AU  - F. I. Mamedov
TI  - Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
JO  - Matematičeskie zametki
PY  - 2008
SP  - 3
EP  - 13
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/
LA  - ru
ID  - MZM_2008_83_1_a0
ER  - 
%0 Journal Article
%A R. A. Amanov
%A F. I. Mamedov
%T Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
%J Matematičeskie zametki
%D 2008
%P 3-13
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/
%G ru
%F MZM_2008_83_1_a0
R. A. Amanov; F. I. Mamedov. Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/