Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

A priori estimates of the solution to the Dirichlet problem and of its first derivatives in terms of weighted Lebesgue norms are obtained for linear and quasilinear equations with degeneracy from $A_p$ Muckenhoupt classes.
Mots-clés : elliptic equation of divergence form, Lebesgue norm, Lebesgue measure
Keywords: Dirichlet problem, Lipschitz condition, Hölder's inequality.
@article{MZM_2008_83_1_a0,
     author = {R. A. Amanov and F. I. Mamedov},
     title = {Regularity of the {Solutions} of {Degenerate} {Elliptic} {Equations} in {Divergent} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/}
}
TY  - JOUR
AU  - R. A. Amanov
AU  - F. I. Mamedov
TI  - Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
JO  - Matematičeskie zametki
PY  - 2008
SP  - 3
EP  - 13
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/
LA  - ru
ID  - MZM_2008_83_1_a0
ER  - 
%0 Journal Article
%A R. A. Amanov
%A F. I. Mamedov
%T Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
%J Matematičeskie zametki
%D 2008
%P 3-13
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/
%G ru
%F MZM_2008_83_1_a0
R. A. Amanov; F. I. Mamedov. Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a0/

[1] G. Stampacchia, “Contributi alla regolarizzazione della soluzioni del problemi al contro per equazi del secondo ordine ellitici”, Ann. Scuola Norm. Sup. Pisa (3), 12 (1958), 223–245 | MR | Zbl

[2] H. F. Weinberger, “Symmetrization in uniformly elliptic problems”, Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, 424–428 | MR | Zbl

[3] M. Chicco, “An a priori inequality concerning elliptic second order partial differential equations of variational type”, Matematiche (Catania), 26:1 (1971), 173–182 | MR

[4] V. G. Mazya, “O slabykh resheniyakh zadach Dirikhle i Neimana”, Tr. MMO, 20 (1969), 137–172 | MR | Zbl

[5] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[6] G. Talenti, “Elliptic equations and rearrangements”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3:4 (1976), 697–718 | MR | Zbl

[7] P. Drabek, A. Kufner, F. Nicolosi, Nonlinear Elliptic Equations (Singular and Degenerated Cases), West Bohemia Univ., Pilshen, 1996

[8] F. I. Mamedov, “O regulyarnosti reshenii lineinykh i kvazilineinykh uravnenii ellipticheskogo tipa v divergentnoi forme”, Matem. zametki, 53:1 (1993), 68–82 | MR | Zbl

[9] Kilpeläinen, “Smooth approximation in weighted Sobolev spaces”, Comment. Math. Univ. Carolin., 38:1 (1997), 29–35 | MR | Zbl

[10] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43–77 | MR | Zbl

[11] E. B. Fabes, C. E. Kenig, R. P. Serapioni, “The local regularity of solutions of degenerate elliptic equations”, Comm. Partial Differential Equations, 7:1 (1982), 77–116 | DOI | MR | Zbl

[12] E. B. Fabes, D. Jerison, C. Kenig, “The Wiener test for degenerate elliptic equations”, Ann. Inst. Fourier (Grenoble), 32:3 (1982), 151–182 | MR

[13] E. T. Sawyer, R. L. Wheeden, “Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces”, Amer. J. Math., 114:4 (1992), 813–874 | DOI | MR | Zbl

[14] F. I. Mamedov, “On two-weighted Sobolev inequalities in unbounded domains”, Proc. A. Razmadze Math. Inst., 21 (1999), 117–123 | MR | Zbl

[15] V. G. Mazya, Prostranstva Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl