Final Distribution for Gani Epidemic Markov Processes
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 873-884.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Kolmogorov equations for the transition probabilities of a three-dimensional Markov process of special form. For a stationary first equation, an exact solution is obtained using the Riemann method. We obtain asymptotics for the expectation and variance of the final distribution and establish a limit theorem.
Keywords: Gani epidemic process, Markov process, transition probabilities, generating function, Bessel function
Mots-clés : Laplace transform, Laguerre polynomial.
@article{MZM_2007_82_6_a6,
     author = {A. V. Mastikhin},
     title = {Final {Distribution} for {Gani} {Epidemic} {Markov} {Processes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {873--884},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a6/}
}
TY  - JOUR
AU  - A. V. Mastikhin
TI  - Final Distribution for Gani Epidemic Markov Processes
JO  - Matematičeskie zametki
PY  - 2007
SP  - 873
EP  - 884
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a6/
LA  - ru
ID  - MZM_2007_82_6_a6
ER  - 
%0 Journal Article
%A A. V. Mastikhin
%T Final Distribution for Gani Epidemic Markov Processes
%J Matematičeskie zametki
%D 2007
%P 873-884
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a6/
%G ru
%F MZM_2007_82_6_a6
A. V. Mastikhin. Final Distribution for Gani Epidemic Markov Processes. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 873-884. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a6/

[1] J. Gani, “Approaches to the modelling of AIDS”, Stochastic Processes in Epidemic Theory, Lecture Notes in Biomathematics, 86, Heidelberg, Springer, 1990, 145–154

[2] B. A. Sevastyanov, A. V. Kalinkin, “Vetvyaschiesya sluchainye protsessy s vzaimodeistviem chastits”, Dokl. AN SSSR, 264:2 (1982), 306–308 | MR | Zbl

[3] A. V. Kalinkin, “Finalnye veroyatnosti vetvyaschegosya protsessa s vzaimodeistviem chastits i protsess epidemii”, Teoriya veroyatn. i ee primen., 43:4 (1998), 773–780 | MR | Zbl

[4] “Epidemii protsess”, Matematicheskaya entsiklopediya, t. 5, Sovetskaya entsiklopediya, M., 1985

[5] A. N. Startsev, “O raspredelenii razmera epidemii v odnoi nemarkovskoi modeli”, Teoriya veroyatn. i ee primen., 41:4 (1996), 827–839 | MR | Zbl

[6] V. P. Maslov, S. E. Tariverdiev, “Asimptotika uravnenii Kolmogorova–Fellera dlya sistemy iz bolshogo chisla chastits”, Itogi nauki i tekhniki. Teoriya veroyatn. Matem. statist. Teoret. kib., 19, VINITI, M., 1982, 85–125 | MR | Zbl

[7] A. V. Kalinkin, “Markovskie vetvyaschiesya protsessy s vzaimodeistviem”, UMN, 57:2 (2002), 23–84 | MR | Zbl

[8] J. Gani, “On a partional differential equation of epidemic theory. I”, Biometrika, 52:3 (1965), 617–622 | MR | Zbl

[9] A. N. Kolmogorov, B. A. Sevastyanov, “Vychislenie finalnykh veroyatnostei dlya vetvyaschikhsya sluchainykh protsessov”, Dokl. AN SSSR, 56 (1947), 783–786 | MR | Zbl

[10] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[11] A. V. Mastikhin, “Reshenie statsionarnogo pervogo uravneniya Kolmogorova dlya markovskogo protsessa epidemii so skhemoi $T_1+T_2\to T_1+T_3$, $T_1+T_3\to T_1$, $T_1\to 0$”, Vestn. MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2005, no. 2 (17), 75–86

[12] A. V. Bitsadze, D. F. Kalinichenko, Sbornik zadach po uravneniyam matematicheskoi fiziki, Nauka, M., 1985 | MR | Zbl

[13] E. T. Copson, Partial Differential Equations, Cambridge Univ. Press, Cambridge, 1975 | MR | Zbl

[14] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1984 | MR | Zbl