Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_6_a3, author = {B. S. Kashin and V. N. Temlyakov}, title = {A {Remark} on {Compressed} {Sensing}}, journal = {Matemati\v{c}eskie zametki}, pages = {829--837}, publisher = {mathdoc}, volume = {82}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a3/} }
B. S. Kashin; V. N. Temlyakov. A Remark on Compressed Sensing. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 829-837. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a3/
[1] S. S. Chen, D. L. Donoho, M. A. Saunders, “Atomic decomposition by basis pursuit”, SIAM Rev., 43:1 (2001), 129–159 | DOI | MR | Zbl
[2] D. L. Donoho, M. Elad, V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise”, IEEE Trans. Inform. Theory, 52:1 (2006), 6–18 | DOI | MR
[3] E. J. Candes, “Compressive sampling”, International Congress of Mathematicians, v. 3 (Madrid, Spain, August 22–30, 2006), Eur. Math. Soc., Zürich, 2006, 1433–1452 | MR | Zbl
[4] R. DeVore, “Optimal computation”, International Congress of Mathematicians, v. 1 (Madrid, Spain, August 22–30, 2006), Eur. Math. Soc., Zürich, 2006, 187–215 | MR
[5] D. L. Donoho, “Compressed sensing”, IEEE Trans. Inform. Theory, 52:4 (2006), 1289–1306 | DOI | MR
[6] A. Cohen, W. Dahmen, R. DeVore, Compressed Sensing and $k$-term Approximation, Manuscript, 2007
[7] R. S. Ismagilov, “Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials”, Russ. Math. Surv., 29:3 (1974), 169–186 | DOI | MR | Zbl
[8] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl | Zbl
[9] A. Yu. Garnaev, E. D. Gluskin, “On widths of the Euclidean ball”, Sov. Math., Dokl., 30 (1984), 200–204 | MR | Zbl
[10] E. J. Candes, T. Tao, “Decoding by linear programming”, IEEE Trans. Inform. Theory, 51:12 (2005), 4203–4215 | DOI | MR
[11] E. J. Candes, J. K. Romberg, T. Tao, “Stable signal recovery from incomplete and inaccurate measurements”, Comm. Pure Appl. Math., 59:8 (2006), 1207–1223 | DOI | MR | Zbl