A Remark on Compressed Sensing
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 829-837.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, a new direction in signal processing – “Compressed Sensing” is being actively developed. A number of authors have pointed out a connection between the Compressed Sensing problem and the problem of estimating the Kolmogorov widths, studied in the seventies and eighties of the last century. In this paper we make the above mentioned connection more precise.
Keywords: compressed sensing, signal processing, Kolmogorov width, Gelfand width, sparsity, restricted isometry property, combinatorial optimization problem.
@article{MZM_2007_82_6_a3,
     author = {B. S. Kashin and V. N. Temlyakov},
     title = {A {Remark} on {Compressed} {Sensing}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {829--837},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a3/}
}
TY  - JOUR
AU  - B. S. Kashin
AU  - V. N. Temlyakov
TI  - A Remark on Compressed Sensing
JO  - Matematičeskie zametki
PY  - 2007
SP  - 829
EP  - 837
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a3/
LA  - ru
ID  - MZM_2007_82_6_a3
ER  - 
%0 Journal Article
%A B. S. Kashin
%A V. N. Temlyakov
%T A Remark on Compressed Sensing
%J Matematičeskie zametki
%D 2007
%P 829-837
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a3/
%G ru
%F MZM_2007_82_6_a3
B. S. Kashin; V. N. Temlyakov. A Remark on Compressed Sensing. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 829-837. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a3/

[1] S. S. Chen, D. L. Donoho, M. A. Saunders, “Atomic decomposition by basis pursuit”, SIAM Rev., 43:1 (2001), 129–159 | DOI | MR | Zbl

[2] D. L. Donoho, M. Elad, V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise”, IEEE Trans. Inform. Theory, 52:1 (2006), 6–18 | DOI | MR

[3] E. J. Candes, “Compressive sampling”, International Congress of Mathematicians, v. 3 (Madrid, Spain, August 22–30, 2006), Eur. Math. Soc., Zürich, 2006, 1433–1452 | MR | Zbl

[4] R. DeVore, “Optimal computation”, International Congress of Mathematicians, v. 1 (Madrid, Spain, August 22–30, 2006), Eur. Math. Soc., Zürich, 2006, 187–215 | MR

[5] D. L. Donoho, “Compressed sensing”, IEEE Trans. Inform. Theory, 52:4 (2006), 1289–1306 | DOI | MR

[6] A. Cohen, W. Dahmen, R. DeVore, Compressed Sensing and $k$-term Approximation, Manuscript, 2007

[7] R. S. Ismagilov, “Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials”, Russ. Math. Surv., 29:3 (1974), 169–186 | DOI | MR | Zbl

[8] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl | Zbl

[9] A. Yu. Garnaev, E. D. Gluskin, “On widths of the Euclidean ball”, Sov. Math., Dokl., 30 (1984), 200–204 | MR | Zbl

[10] E. J. Candes, T. Tao, “Decoding by linear programming”, IEEE Trans. Inform. Theory, 51:12 (2005), 4203–4215 | DOI | MR

[11] E. J. Candes, J. K. Romberg, T. Tao, “Stable signal recovery from incomplete and inaccurate measurements”, Comm. Pure Appl. Math., 59:8 (2006), 1207–1223 | DOI | MR | Zbl