Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_6_a11, author = {A. M. Sokolovskaya}, title = {A {Method} for {Constructing} {Semilattices} of $G${-Compactifications}}, journal = {Matemati\v{c}eskie zametki}, pages = {916--925}, publisher = {mathdoc}, volume = {82}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a11/} }
A. M. Sokolovskaya. A Method for Constructing Semilattices of $G$-Compactifications. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 916-925. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a11/
[1] K. L. Kozlov, V. A. Chatyrko, “O bikompaktnykh $G$-rasshireniyakh”, Matem. zametki, 78:5 (2005), 695–709 | MR | Zbl
[2] J. M. Smirnov, L. N. Stojanov, “On minimal equivariant compact extensions”, C. R. Acad. Bulgare Sci., 36:6 (1983), 733–736 | MR | Zbl
[3] Yu. M. Smirnov, “Mogut li prostye geometricheskie ob'ekty byt maksimalnymi kompaktnymi rasshireniyami dlya $\mathbb R^n$”, UMN, 49:6 (1994), 213–214 | MR | Zbl
[4] Yu. M. Smirnov, “Minimalnye topologii na deistvuyuschikh gruppakh”, UMN, 50:6 (1995), 217–218 | MR | Zbl
[5] A. M. Sokolovskaya, “Suschestvovanie $G$-tikhonovskikh prostranstv, polureshetki bikompaktnykh $G$-rasshirenii kotorykh imeyut minimalnye ne naimenshie elementy”, Aleksandrovskie chteniya – 2006, Tezisy dokladov mezhdunarodnoi konferentsii, posvyaschennoi 110-letiyu so dnya rozhdeniya Pavla Sergeevicha Aleksandrova, M., 2006, 37–38
[6] J. de Vries, “On the existense of $G$-compactifications”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26:3 (1978), 275–280 | MR | Zbl
[7] J. de Vries, Topological transformation groups I. A categorical approach, Mathematical Centre Tracts, 65, Mathematisch Centrum, Amsterdam, 1975 | MR | Zbl
[8] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR | Zbl
[9] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl
[10] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl