A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0$
Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 718-728.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $H^p(E^+_{2n})$ is the Hardy space for the first octant $$ E_{2n}^+=\{z\in\mathbb C^n:\operatorname{Im}z_j>0,\,j=1,\dots,n\} $$ and $P^l_\varepsilon(f,x)$, $l>0$, is the generalized Abel–Poisson means of a function $f\in H^p(E^+_{2n})$. In this paper, we prove the inequalities $$ C_1(l,p)\widetilde\omega_l(\varepsilon,f)_p \le\|f(x)-P^l_\varepsilon(f,x)\|_p \le C_2(l,p)\omega_l(\varepsilon,f)_p, $$ where $\widetilde\omega_l(\varepsilon,f)_p$ and $\omega_l(\varepsilon,f)_p$ are the integral moduli of continuity of $l$th order. For $n=1$ and an integer $l$, this result was obtained by Soljanik.
Keywords: Fourier integral, Hardy space, generalized Abel–Poisson mean, modulus of continuity, holomorphic function.
@article{MZM_2007_82_5_a6,
     author = {S. G. Pribegin},
     title = {A {Method} for {Summing} {Fourier} {Integrals} for {Functions} from $H^p(E_{2n}^+)$, $0<p<\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {718--728},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a6/}
}
TY  - JOUR
AU  - S. G. Pribegin
TI  - A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0
JO  - Matematičeskie zametki
PY  - 2007
SP  - 718
EP  - 728
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a6/
LA  - ru
ID  - MZM_2007_82_5_a6
ER  - 
%0 Journal Article
%A S. G. Pribegin
%T A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0
%J Matematičeskie zametki
%D 2007
%P 718-728
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a6/
%G ru
%F MZM_2007_82_5_a6
S. G. Pribegin. A Method for Summing Fourier Integrals for Functions from $H^p(E_{2n}^+)$, $0
                  
                

[1] A. A. Soljanik, “On the order of approximation to function of $H^p(\mathbb R)$ ($0

\le1$) by certain means of Fourier integrals”, Anal. Math., 12:1 (1986), 59–75 | DOI | MR | Zbl

[2] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[3] S. G. Pribegin, “Ob odnom metode priblizheniya v $H^p$, $0

\le1$”, Matem. sb., 192:11 (2001), 123–136 | MR | Zbl

[4] E. A. Storozhenko, “O priblizhenii funktsii klassa $H^p$, $0

1$”, Soobsch. AN GSSR, 88:1 (1977), 45–48 | MR | Zbl

[5] E. A. Storozhenko, “Ob odnoi zadache Khardi–Littlvuda”, Matem. sb., 119:4 (1982), 564–583 | MR | Zbl

[6] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR | Zbl

[7] E. A. Storozhenko, “O teoremakh tipa Dzheksona v $H^p$, $0

1$”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 946–962 | MR | Zbl