Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_4_a5, author = {P. N. Vabishchevich}, title = {Convergence of {Metropolis-Type} {Algorithms} for a {Large} {Canonical} {Ensemble}}, journal = {Matemati\v{c}eskie zametki}, pages = {519--524}, publisher = {mathdoc}, volume = {82}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a5/} }
P. N. Vabishchevich. Convergence of Metropolis-Type Algorithms for a Large Canonical Ensemble. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 519-524. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a5/
[1] W. K. Hastings, “Monte-Carlo sampling methods using Markov chains and their applications”, Biometrika, 57:1 (1970), 97–109 | DOI | Zbl
[2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, “Equations of state calculations by fast computing machines”, J. Chem. Phys., 21:6 (1953), 1087–1092 | DOI
[3] S. P. Meyn, R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag, London, 1993 | MR | Zbl
[4] G. O. Roberts, J. S. Rosenthal, General state space Markov chains and MCMC algorithms, arXiv: math/0404033 | MR
[5] K. L. Mengersen, R. L. Tweedie, “Rates of convergence of the Hastings and Metropolis algorithms”, Ann. Statist., 24:1 (1996), 101–121 | DOI | MR | Zbl
[6] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, t. 5: Statisticheskaya fizika, Nauka, M., 1964 | MR | Zbl