Convergence of Metropolis-Type Algorithms for a Large Canonical Ensemble
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 519-524.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the convergence of Metropolis-type algorithms used in modeling statistical systems with a variable number of particles located in a bounded volume. We justify the use of Metropolis algorithms for a particular class of such statistical systems. We prove a theorem on the geometric ergodicity of the Markov process modeling the behavior of an ensemble with a variable number of particles in a bounded volume whose interaction is described by a potential bounded below and increasing according to the law $r^{-3-\alpha}$, $\alpha\ge0$, as $r\to0$.
Keywords: Metropolis algorithm, density function, probability measure, Markov process, geometric ergodicity, drift condition.
Mots-clés : statistical ensemble
@article{MZM_2007_82_4_a5,
     author = {P. N. Vabishchevich},
     title = {Convergence of {Metropolis-Type} {Algorithms} for a {Large} {Canonical} {Ensemble}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--524},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a5/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Convergence of Metropolis-Type Algorithms for a Large Canonical Ensemble
JO  - Matematičeskie zametki
PY  - 2007
SP  - 519
EP  - 524
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a5/
LA  - ru
ID  - MZM_2007_82_4_a5
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Convergence of Metropolis-Type Algorithms for a Large Canonical Ensemble
%J Matematičeskie zametki
%D 2007
%P 519-524
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a5/
%G ru
%F MZM_2007_82_4_a5
P. N. Vabishchevich. Convergence of Metropolis-Type Algorithms for a Large Canonical Ensemble. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 519-524. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a5/

[1] W. K. Hastings, “Monte-Carlo sampling methods using Markov chains and their applications”, Biometrika, 57:1 (1970), 97–109 | DOI | Zbl

[2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, “Equations of state calculations by fast computing machines”, J. Chem. Phys., 21:6 (1953), 1087–1092 | DOI

[3] S. P. Meyn, R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag, London, 1993 | MR | Zbl

[4] G. O. Roberts, J. S. Rosenthal, General state space Markov chains and MCMC algorithms, arXiv: math/0404033 | MR

[5] K. L. Mengersen, R. L. Tweedie, “Rates of convergence of the Hastings and Metropolis algorithms”, Ann. Statist., 24:1 (1996), 101–121 | DOI | MR | Zbl

[6] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, t. 5: Statisticheskaya fizika, Nauka, M., 1964 | MR | Zbl