Semiclassical Spectrum of the Schr\"odinger Operator on a Geometric Graph
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 606-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study how to construct asymptotic solutions of the spectral problem for the Schrödinger equation on a geometric graph. Differential equations on sets of this type arise in the study of processes in systems that can be represented as a collection of one-dimensional continua interacting only via their endpoints (e.g., vibrations of networks formed by strings or rods, steady states of electrons in molecules, or acoustical systems). The interest in Schrödinger equations on networks has increased, in particular, owing to the fact that nanotechnology objects can be described by thin manifolds that can in the limit shrink to graphs (see [1]). The main result of the present paper is an algorithm for constructing quantization rules (generalizing the well-known Bohr–Sommerfeld quantization rules). We illustrate it with a number of examples. We also consider the problem of describing the kernels of the Laplace operator acting on $k$-forms defined on a network. Finally, we find the asymptotic eigenvalues corresponding to eigenfunctions localized at a vertex of the graph.
Keywords: geometric graph, one-dimensional Schrödinger operator, spectrum, asymptotics, Laplace operator, Betti number.
Mots-clés : Sturm–Liouville problem
@article{MZM_2007_82_4_a15,
     author = {V. L. Chernyshev and A. I. Shafarevich},
     title = {Semiclassical {Spectrum} of the {Schr\"odinger} {Operator} on a {Geometric} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {606--620},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a15/}
}
TY  - JOUR
AU  - V. L. Chernyshev
AU  - A. I. Shafarevich
TI  - Semiclassical Spectrum of the Schr\"odinger Operator on a Geometric Graph
JO  - Matematičeskie zametki
PY  - 2007
SP  - 606
EP  - 620
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a15/
LA  - ru
ID  - MZM_2007_82_4_a15
ER  - 
%0 Journal Article
%A V. L. Chernyshev
%A A. I. Shafarevich
%T Semiclassical Spectrum of the Schr\"odinger Operator on a Geometric Graph
%J Matematičeskie zametki
%D 2007
%P 606-620
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a15/
%G ru
%F MZM_2007_82_4_a15
V. L. Chernyshev; A. I. Shafarevich. Semiclassical Spectrum of the Schr\"odinger Operator on a Geometric Graph. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 606-620. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a15/

[1] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl

[2] O. M. Penkin, Yu. V. Pokornyi, “O nekotorykh kachestvennykh svoistvakh uravnenii na odnomernom kletochnom komplekse”, Matem. zametki, 59:5 (1996), 777–780 | MR | Zbl

[3] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Izd-vo Fizmatlit, M., 2004 | MR | Zbl

[4] P. Kuchment, “Graph models for waves in thin structures”, Waves in Random Media, 12:4 (2002), 1–24 | DOI | MR | Zbl

[5] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[6] N. I. Gerasimenko, B. S. Pavlov, “Zadacha rasseyaniya na nekompaktnykh grafakh”, TMF, 74:3 (1988), 345–359 | MR | Zbl

[7] M. G. Zavgorodnii, “Spektralnaya polnota kornevykh funktsii kraevoi zadachi na grafe”, Dokl. AN SSSR, 335:3 (1994), 281–283 | MR | Zbl

[8] Kh. Tsikon, R. Frëze, B. Saimon, V. Kirsh, Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR | Zbl

[9] P. Kurasov, M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915 | DOI | MR | Zbl

[10] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, t. 3: Teoriya gomologii, Editorial URSS, M., 2001 | MR | Zbl

[11] N. Kristofides, Teoriya grafov: Algoritmicheskii podkhod, Mir, M., 1978 | MR | Zbl

[12] E. B. Davies, “Pseudospectra of differential operators”, J. Operator Theory, 43:2 (2000), 243–262 | MR | Zbl

[13] V. P. Maslov, Kompleksnyi metod VKB dlya nelineinykh uravnenii, Nauka, M., 1977 | MR | Zbl