Mots-clés : Sturm–Liouville problem
@article{MZM_2007_82_4_a15,
author = {V. L. Chernyshev and A. I. Shafarevich},
title = {Semiclassical {Spectrum} of the {Schr\"odinger} {Operator} on a {Geometric} {Graph}},
journal = {Matemati\v{c}eskie zametki},
pages = {606--620},
year = {2007},
volume = {82},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a15/}
}
V. L. Chernyshev; A. I. Shafarevich. Semiclassical Spectrum of the Schrödinger Operator on a Geometric Graph. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 606-620. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a15/
[1] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl
[2] O. M. Penkin, Yu. V. Pokornyi, “O nekotorykh kachestvennykh svoistvakh uravnenii na odnomernom kletochnom komplekse”, Matem. zametki, 59:5 (1996), 777–780 | MR | Zbl
[3] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Izd-vo Fizmatlit, M., 2004 | MR | Zbl
[4] P. Kuchment, “Graph models for waves in thin structures”, Waves in Random Media, 12:4 (2002), 1–24 | DOI | MR | Zbl
[5] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[6] N. I. Gerasimenko, B. S. Pavlov, “Zadacha rasseyaniya na nekompaktnykh grafakh”, TMF, 74:3 (1988), 345–359 | MR | Zbl
[7] M. G. Zavgorodnii, “Spektralnaya polnota kornevykh funktsii kraevoi zadachi na grafe”, Dokl. AN SSSR, 335:3 (1994), 281–283 | MR | Zbl
[8] Kh. Tsikon, R. Frëze, B. Saimon, V. Kirsh, Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR | Zbl
[9] P. Kurasov, M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915 | DOI | MR | Zbl
[10] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, t. 3: Teoriya gomologii, Editorial URSS, M., 2001 | MR | Zbl
[11] N. Kristofides, Teoriya grafov: Algoritmicheskii podkhod, Mir, M., 1978 | MR | Zbl
[12] E. B. Davies, “Pseudospectra of differential operators”, J. Operator Theory, 43:2 (2000), 243–262 | MR | Zbl
[13] V. P. Maslov, Kompleksnyi metod VKB dlya nelineinykh uravnenii, Nauka, M., 1977 | MR | Zbl