On Periodic Groups of Odd Period $n\ge1003$
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 495-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, using the Adyan–Lysenok theorem claiming that, for any odd number $n\ge1003$, there is an infinite group each of whose proper subgroups is contained in a cyclic subgroup of order $n$, it is proved that the set of groups with this property has the cardinality of the continuum (for a given $n$). Further, it is proved that, for $m\ge k\ge2$ and for any odd $n\ge1003$, the $m$-generated free $n$-periodic group is residually both a group of the above type and a $k$-generated free $n$-periodic group, and it does not satisfy the ascending and descending chain conditions for normal subgroups either.
Keywords: periodic group, group of bounded period, variety of groups of a given exponent, Adyan–Lysenok theorem.
Mots-clés : simple group
@article{MZM_2007_82_4_a1,
     author = {V. S. Atabekyan},
     title = {On {Periodic} {Groups} of {Odd} {Period} $n\ge1003$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {495--500},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a1/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - On Periodic Groups of Odd Period $n\ge1003$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 495
EP  - 500
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a1/
LA  - ru
ID  - MZM_2007_82_4_a1
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T On Periodic Groups of Odd Period $n\ge1003$
%J Matematičeskie zametki
%D 2007
%P 495-500
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a1/
%G ru
%F MZM_2007_82_4_a1
V. S. Atabekyan. On Periodic Groups of Odd Period $n\ge1003$. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 495-500. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a1/

[1] G. Higman, “A finitely generated infinite simple group”, J. London Math. Soc., 26 (1951), 61–64 | DOI | MR | Zbl

[2] S. I. Adyan, “Periodicheskoe proizvedenie grupp”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN, 142, 1976, 3–21 | MR | Zbl

[3] S. I. Adyan, “O prostote periodicheskikh proizvedenii grupp”, Dokl. AN SSSR, 241:4 (1978), 745–748 | MR | Zbl

[4] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR | Zbl

[5] A. Yu. Olshanskii, “Gruppy ogranichennogo perioda s podgruppami prostykh poryadkov”, Algebra i logika, 21:5 (1982), 553–618 | MR | Zbl

[6] V. S. Atabekyan, S. V. Ivanov, Dva zamechaniya o gruppakh ogranichennogo perioda, dep. v VINITI 243-B87

[7] S. I. Adyan, I. G. Lysenok, “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 933–990 | MR | Zbl

[8] V. S. Atabekyan, Ob approksimatsii i podgruppakh svobodnykh periodicheskikh grupp, dep. v VINITI 5380-V86

[9] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR | Zbl

[10] S. I. Adyan, “Normalnye podgruppy svobodnykh periodicheskikh grupp”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 931–947 | MR | Zbl

[11] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[12] N. Gupta, F. Levin, “Generation groups of certain product varieties”, Arch. Math., 30:2 (1978), 113–117 | DOI | MR | Zbl

[13] V. L. Shirvanyan, “Vlozhenie gruppy $B(\infty,n)$ v gruppu $B(2,n)$”, Izv. AN SSSR. Ser. matem., 40:1 (1976), 190–208 | MR | Zbl