An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 411-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study discrete Sobolev spaces with symmetric inner product $$ \langle f,g\rangle_\alpha =\int_{-1}^1fg\,d\mu_\alpha+M[f(1)g(1)+f(-1)g(-1)]+K[f'(1)g'(1)+f'(-1)g'(-1)], $$ where $M\ge0$, $K\ge0$, and $$ d\mu_\alpha(x) =\frac{\Gamma(2\alpha+2)} {2^{2\alpha+1}\Gamma^2(\alpha+1)}\,(1-x^2)^\alpha\,dx,\qquad \alpha>-1, $$ is the Gegenbauer probability measure. We obtain the solution of the following extremal problem: Calculate $$ \inf_{a_0,a_1,\dots,a_{N-r}}\biggl\{ \langle P^{(r)}_N,P^{(r)}_N\rangle_\alpha,1\le r\le N-1,P^{(r)}_N(x) =\sum_{j=N-r+1}^{N}a^0_j x^j+\sum_{j=0}^{N-r}a_j x^j\biggr\}, $$ where the $a^0_j$, $j=N-r+1,N-r+2,\dots,N-1,N$, $a^0_N>0$, are fixed numbers, and find the extremal polynomial.
Mots-clés : algebraic polynomial
Keywords: discrete Gegenbauer–Sobolev space, Gegenbauer probability measure, extremal problem, Hilbert space, Gram–Schmidt orthogonalization.
@article{MZM_2007_82_3_a9,
     author = {B. P. Osilenker},
     title = {An {Extremal} {Problem} for {Algebraic} {Polynomials} in the {Symmetric} {Discrete} {Gegenbauer--Sobolev} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {411--425},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space
JO  - Matematičeskie zametki
PY  - 2007
SP  - 411
EP  - 425
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/
LA  - ru
ID  - MZM_2007_82_3_a9
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space
%J Matematičeskie zametki
%D 2007
%P 411-425
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/
%G ru
%F MZM_2007_82_3_a9
B. P. Osilenker. An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 411-425. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/

[1] F. Atkinson, Nepreryvnye i diskretnye zadachi, Mir, M., 1968 | MR | Zbl

[2] E. G. Dyakonov, Energeticheskie prostranstva i ikh primeneniya, MGU, M., 2001

[3] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, t. 1, Gostekhizdat, M., 1951 | MR | Zbl

[4] C. T. Fulton, S. Pruess, “Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions”, J. Math. Anal. Appl., 71:2 (1979), 431–462 | DOI | MR | Zbl

[5] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97 (139):4 (8) (1975), 607–629 | MR | Zbl

[6] Zh. Kampe de Fere, R. Kempbell, G. Peto, T. Fogel, Funktsii matematicheskoi fiziki, Fizmatgiz, M., 1963

[7] A. Krall, Hilbert space, Boundary Value Problems and Orthogonal Polynomials, Operator Theory: Advances and Applications, 133, Birkhauser, Basel, 2002 | MR | Zbl

[8] G. Lopes, “Skhodimost approksimatsii Pade meromorfnykh funktsii stiltesovskogo tipa i sravnitelnaya asimptotika dlya ortogonalnykh mnogochlenov”, Matem. sb., 136 (178):2 (6) (1988), 206–226 | MR | Zbl

[9] F. Marcellan, M. Alfaro, M. L. Rezola, “Orthogonal polynomials: old and new directions”, J. Comput. Appl. Math., 48:1–2 (1993), 113–131 | DOI | MR | Zbl

[10] V. I. Smirnov, Kurs vysshei matematiki, t. 4, Nauka. Fizmatlit, M., 1957

[11] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka. Fizmatlit, M., 1966 | Zbl

[12] A. Martinez-Finkelshtein, “Asymptotic properties of Sobolev orthogonal polynomials”, Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), J. Comput. Appl. Math., 99:1–2 (1998), 491–510 | DOI | MR | Zbl

[13] A. Martinez Finkelshtein, H. P. Carbera, “Strong asymptotics for Sobolev orthogonal polynomials”, J. Anal. Math., 78 (1999), 143–156 | DOI | MR | Zbl

[14] G. Segë, Ortogonalnye mnogochleny, GIFML, M., 1962 | MR | Zbl

[15] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl

[16] H. Bavinck, H. G. Meijer, “Orthogonal polynomials with respect to a symmetric inner product involving derivatives”, Appl. Anal., 33:1–2 (1989), 103–117 | DOI | MR | Zbl

[17] H. Bavinck, H. G. Meijer, “On orthogonal polynomials with respect to an inner product involving derivatives: zeros and recurrence relations”, Indag. Math. (N.S.), 1:1 (1990), 7–14 | DOI | MR | Zbl

[18] A. Moreno Foulquie, F. Marcellan, B. P. Osilenker, “Estimates for polynomials orthogonal with respect to some Gegenbauer–Sobolev inner product”, J. Inequal. Appl, 3:4 (1999), 401–419 | DOI | MR | Zbl

[19] R. Koekoek, “Differential equations for symmetric generalized ultraspherical polynomials”, Trans. Amer. Math. Soc., 345:1 (1994), 47–72 | DOI | MR | Zbl

[20] H. Bavinck, “Differential operators having Sobolev – type Gegenbauer polynomials as eigenfunctions”, J. Comput. Appl. Math., 118:1–2 (2000), 23–42 | DOI | MR | Zbl

[21] F. Marchelan, B. P. Osilenker, “Otsenki polinomov, ortogonalnykh po otnosheniyu k skalyarnomu proizvedeniyu Lezhandra–Soboleva”, Matem. zametki, 62:6 (1997), 871–880 | MR | Zbl

[22] J. Arvesu, R. Alvarez-Nodarse, F. Marcellan, K. Pan, “Jacobi–Sobolev-type orthogonal polynomials: Second-order differential equation and zeros”, J. Comput. Appl. Math., 90:2 (1998), 135–156 | DOI | MR | Zbl

[23] W. D. Evans, L. Littlejohn Lance, F. Marcellan, C. Markett, A. Ronveaux, “On recurrence relations for Sobolev orthogonal polynomials”, SIAM J. Math. Anal., 26:2 (1995), 446–467 | DOI | MR | Zbl

[24] B. P. Osilenker, “Simmetrichnye polinomy Lezhandra–Soboleva v prostranstvakh Pontryagina–Soboleva”, Matem. fizika, analiz, geometriya, 9:3 (2002), 385–393 | MR | Zbl

[25] B. P. Osilenker, “Simmetrichnye ortogonalnye polinomy Gegenbauera v prostranstve s indefinitnoi metrikoi”, Sb. nauchnykh trudov MGSU, 2003, no. 10, 39–45

[26] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR