An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 411-425

Voir la notice de l'article provenant de la source Math-Net.Ru

We study discrete Sobolev spaces with symmetric inner product $$ \langle f,g\rangle_\alpha =\int_{-1}^1fg\,d\mu_\alpha+M[f(1)g(1)+f(-1)g(-1)]+K[f'(1)g'(1)+f'(-1)g'(-1)], $$ where $M\ge0$, $K\ge0$, and $$ d\mu_\alpha(x) =\frac{\Gamma(2\alpha+2)} {2^{2\alpha+1}\Gamma^2(\alpha+1)}\,(1-x^2)^\alpha\,dx,\qquad \alpha>-1, $$ is the Gegenbauer probability measure. We obtain the solution of the following extremal problem: Calculate $$ \inf_{a_0,a_1,\dots,a_{N-r}}\biggl\{ \langle P^{(r)}_N,P^{(r)}_N\rangle_\alpha,1\le r\le N-1,P^{(r)}_N(x) =\sum_{j=N-r+1}^{N}a^0_j x^j+\sum_{j=0}^{N-r}a_j x^j\biggr\}, $$ where the $a^0_j$, $j=N-r+1,N-r+2,\dots,N-1,N$, $a^0_N>0$, are fixed numbers, and find the extremal polynomial.
Mots-clés : algebraic polynomial
Keywords: discrete Gegenbauer–Sobolev space, Gegenbauer probability measure, extremal problem, Hilbert space, Gram–Schmidt orthogonalization.
@article{MZM_2007_82_3_a9,
     author = {B. P. Osilenker},
     title = {An {Extremal} {Problem} for {Algebraic} {Polynomials} in the {Symmetric} {Discrete} {Gegenbauer--Sobolev} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {411--425},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space
JO  - Matematičeskie zametki
PY  - 2007
SP  - 411
EP  - 425
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/
LA  - ru
ID  - MZM_2007_82_3_a9
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space
%J Matematičeskie zametki
%D 2007
%P 411-425
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/
%G ru
%F MZM_2007_82_3_a9
B. P. Osilenker. An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer--Sobolev Space. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 411-425. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a9/