On $n$-Term Approximation with Positive Coefficients
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 373-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider algorithms for constructing $n$-terms approximations with nonnegative coefficients. The convergence theorem is proved for a “positive” analog of the Pure Greedy Algorithm. We establish a condition on the sequence of weakness coefficients which is sufficient for the convergence of the Positive Weak Greedy Algorithm. This condition is also necessary for the class of monotone sequences.
Mots-clés : polynomial approximation
Keywords: greedy algorithm, approximation theory, positive dictionary, redundant system.
@article{MZM_2007_82_3_a4,
     author = {E. D. Livshits},
     title = {On $n${-Term} {Approximation} with {Positive} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {373--382},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a4/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - On $n$-Term Approximation with Positive Coefficients
JO  - Matematičeskie zametki
PY  - 2007
SP  - 373
EP  - 382
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a4/
LA  - ru
ID  - MZM_2007_82_3_a4
ER  - 
%0 Journal Article
%A E. D. Livshits
%T On $n$-Term Approximation with Positive Coefficients
%J Matematičeskie zametki
%D 2007
%P 373-382
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a4/
%G ru
%F MZM_2007_82_3_a4
E. D. Livshits. On $n$-Term Approximation with Positive Coefficients. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 373-382. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a4/

[1] V. V. Galatenko, E. D. Livshits, “Obobschennye priblizhennye slabye zhadnye algoritmy”, Matem. zametki, 78:2 (2005), 186–201 | MR | Zbl

[2] L. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and network training”, Ann. Statist., 20:1 (1992), 608–613 | DOI | MR | Zbl

[3] V. N. Temlyakov, “Weak greedy algorithms”, Adv. Comput. Math., 12:2–3 (2000), 213–227 | DOI | MR | Zbl

[4] E. D. Livshits, V. N. Temlyakov, “O skhodimosti slabogo gridi-algoritma”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, 2001, 236–247 | MR | Zbl

[5] V. N. Temlyakov, “A criterion for convergence of Weak Greedy Algorithms”, Adv. Comp. Math., 17:3 (2002), 269–280 | DOI | MR | Zbl

[6] A. Barron, “Approximation and estimation bounds for artificial neural networks”, Proceedings of the Fourth Annula Workshop on Computational Learning Theory, Kaufmann, 1991, 243–249

[7] A. Barron, A. Cohen, W. Dahmen, R. DeVore, Approximation and Learning by Greedy Algorithms submitted to Annals of Statistics, , 2006 http://www.igpm.rwth-aachen.de/ ̃ dahmen/rep-06.html

[8] M. Donahue, L. Gurvits, C. Darken, E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220 | DOI | MR | Zbl

[9] V. N. Temlyakov, Relaxation in Greedy Approximation submitted to Constructive Approximation, http://www.math.sc.edu/IMI/technical/tech06.html | MR

[10] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl

[11] R. A. DeVore, V. N. Temlyakov, “Some remarks on Greedy Algorithms”, Adv. Comput. Math., 5:1 (1996), 173–187 | DOI | MR | Zbl

[12] E. D. Livshits, “O vozvratnom zhadnom algoritme”, Izv. RAN. Ser. matem., 70:1 (2006), 95–116 | MR | Zbl