Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_3_a11, author = {M. E. Shirokov}, title = {On the {Strong} {CE-Property} of {Convex} {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {441--458}, publisher = {mathdoc}, volume = {82}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/} }
M. E. Shirokov. On the Strong CE-Property of Convex Sets. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 441-458. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/
[1] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl
[2] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004
[3] E. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl
[4] A. S. Kholevo, Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002
[5] A. Lima, “On continuous convex functions and split faces”, Proc. London Math. Soc. (3), 25:3 (1972), 27–40 | DOI | MR | Zbl
[6] S. S. Kutateladze, “Granitsy Shoke v $K$-prostranstvakh”, UMN, 30:4 (1975), 107–146 | MR | Zbl
[7] R. Felps, Lektsii o teoremakh Shoke, Mir, M., 1968 | MR | Zbl
[8] M. V. Balashov, “O $P$-svoistve vypuklykh kompaktov”, Matem. zametki, 71:3 (2002), 323–333 | MR | Zbl
[9] K. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, 3, Academic Press, New York–London, 1967 | MR | Zbl
[10] G. A. Edgar, “Extremal integral representations”, J. Funct. Anal., 23:2 (1976), 145–161 | DOI | MR | Zbl
[11] A. S. Kholevo, M. E. Shirokov, “Nepreryvnye ansambli i klassicheskaya propusknaya sposobnost kvantovykh kanalov beskonechnoi razmernosti”, Teoriya veroyatn. i ee primen., 50:1 (2005), 98–114 ; arXiv: quant-ph/0408176 | MR | Zbl
[12] R. D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodiym property, Lecture Notes in Math., 993, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl
[13] R. D. Bourgin, G. A. Edgar, “Noncompact simplexes in Banach spaces with the Radon-Nikodiym property”, J. Funct. Anal., 23:2 (1976), 162–176 | DOI | MR | Zbl
[14] M. E. Shirokov, Properties of probability measures on the set of quantum states and their applications, arXiv: math-ph/0607019
[15] M. Keyl, “Fundamentals of Quantum Information Theory”, Phys. Rep., 369:5 (2002), 431–548 ; arXiv: quant-ph/0202122 | DOI | MR | Zbl
[16] M. E. Shirokov, “The Holevo capacity of infinite dimensional channels and the additivity problem”, Comm. Math. Phys., 262:1 (2006), 137–159 ; arXiv: quant-ph/0408009 | DOI | MR | Zbl
[17] G. Lindblad, “Expectation and Entropy Inequalities for Finite Quantum Systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl
[18] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, “Mixed-State Entanglement and Quantum Error Correction”, Phys. Rev. A (3), 54:5 (1996), 3824–3851 ; arXiv: quant-ph/9604024 | DOI | MR
[19] M. E. Shirokov, On entropic quantities related to the classical capacity of infinite dimensional quantum channels, arXiv: quant-ph/0411091
[20] M. A. Nielsen, “Continuity bounds for entangelment”, Phys. Rev. A (3), 61:6 (2000) | DOI | MR
[21] K. Matsumoto, T. Shimono, A. Winter, “Remarks on additivity of the Holevo channel capacity and of the entanglement of formation”, Comm. Math. Phys., 246:3 (2004), 427–442 | DOI | MR | Zbl
[22] M. E. Shirokov, The convex closure of the output entropy of infinite dimensional channels and the additivity problem, arXiv: quant-ph/0608090