On the Strong CE-Property of Convex Sets
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 441-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of convex bounded subsets of a separable Banach space. This class includes all convex compact sets as well as some noncompact sets important in applications. For sets in this class, we obtain a simple criterion for the strong CE-property, i.e., the property that the convex closure of any continuous bounded function is a continuous bounded function. Some results are obtained concerning the extension of functions defined at the extreme points of a set in this class to convex or concave functions defined on the entire set with preservation of closedness and continuity. Some applications of the results in quantum information theory are considered.
Keywords: compact set, continuity, convex function, concave function, convex envelope, convex closure, $\mathrm{CE}$-property, topological linear space, separable Banach space.
@article{MZM_2007_82_3_a11,
     author = {M. E. Shirokov},
     title = {On the {Strong} {CE-Property} of {Convex} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {441--458},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On the Strong CE-Property of Convex Sets
JO  - Matematičeskie zametki
PY  - 2007
SP  - 441
EP  - 458
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/
LA  - ru
ID  - MZM_2007_82_3_a11
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On the Strong CE-Property of Convex Sets
%J Matematičeskie zametki
%D 2007
%P 441-458
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/
%G ru
%F MZM_2007_82_3_a11
M. E. Shirokov. On the Strong CE-Property of Convex Sets. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 441-458. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/

[1] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl

[2] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[3] E. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl

[4] A. S. Kholevo, Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002

[5] A. Lima, “On continuous convex functions and split faces”, Proc. London Math. Soc. (3), 25:3 (1972), 27–40 | DOI | MR | Zbl

[6] S. S. Kutateladze, “Granitsy Shoke v $K$-prostranstvakh”, UMN, 30:4 (1975), 107–146 | MR | Zbl

[7] R. Felps, Lektsii o teoremakh Shoke, Mir, M., 1968 | MR | Zbl

[8] M. V. Balashov, “O $P$-svoistve vypuklykh kompaktov”, Matem. zametki, 71:3 (2002), 323–333 | MR | Zbl

[9] K. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, 3, Academic Press, New York–London, 1967 | MR | Zbl

[10] G. A. Edgar, “Extremal integral representations”, J. Funct. Anal., 23:2 (1976), 145–161 | DOI | MR | Zbl

[11] A. S. Kholevo, M. E. Shirokov, “Nepreryvnye ansambli i klassicheskaya propusknaya sposobnost kvantovykh kanalov beskonechnoi razmernosti”, Teoriya veroyatn. i ee primen., 50:1 (2005), 98–114 ; arXiv: quant-ph/0408176 | MR | Zbl

[12] R. D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodiym property, Lecture Notes in Math., 993, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[13] R. D. Bourgin, G. A. Edgar, “Noncompact simplexes in Banach spaces with the Radon-Nikodiym property”, J. Funct. Anal., 23:2 (1976), 162–176 | DOI | MR | Zbl

[14] M. E. Shirokov, Properties of probability measures on the set of quantum states and their applications, arXiv: math-ph/0607019

[15] M. Keyl, “Fundamentals of Quantum Information Theory”, Phys. Rep., 369:5 (2002), 431–548 ; arXiv: quant-ph/0202122 | DOI | MR | Zbl

[16] M. E. Shirokov, “The Holevo capacity of infinite dimensional channels and the additivity problem”, Comm. Math. Phys., 262:1 (2006), 137–159 ; arXiv: quant-ph/0408009 | DOI | MR | Zbl

[17] G. Lindblad, “Expectation and Entropy Inequalities for Finite Quantum Systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[18] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, “Mixed-State Entanglement and Quantum Error Correction”, Phys. Rev. A (3), 54:5 (1996), 3824–3851 ; arXiv: quant-ph/9604024 | DOI | MR

[19] M. E. Shirokov, On entropic quantities related to the classical capacity of infinite dimensional quantum channels, arXiv: quant-ph/0411091

[20] M. A. Nielsen, “Continuity bounds for entangelment”, Phys. Rev. A (3), 61:6 (2000) | DOI | MR

[21] K. Matsumoto, T. Shimono, A. Winter, “Remarks on additivity of the Holevo channel capacity and of the entanglement of formation”, Comm. Math. Phys., 246:3 (2004), 427–442 | DOI | MR | Zbl

[22] M. E. Shirokov, The convex closure of the output entropy of infinite dimensional channels and the additivity problem, arXiv: quant-ph/0608090