On the Strong CE-Property of Convex Sets
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 441-458

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of convex bounded subsets of a separable Banach space. This class includes all convex compact sets as well as some noncompact sets important in applications. For sets in this class, we obtain a simple criterion for the strong CE-property, i.e., the property that the convex closure of any continuous bounded function is a continuous bounded function. Some results are obtained concerning the extension of functions defined at the extreme points of a set in this class to convex or concave functions defined on the entire set with preservation of closedness and continuity. Some applications of the results in quantum information theory are considered.
Keywords: compact set, continuity, convex function, concave function, convex envelope, convex closure, $\mathrm{CE}$-property, topological linear space, separable Banach space.
@article{MZM_2007_82_3_a11,
     author = {M. E. Shirokov},
     title = {On the {Strong} {CE-Property} of {Convex} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {441--458},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On the Strong CE-Property of Convex Sets
JO  - Matematičeskie zametki
PY  - 2007
SP  - 441
EP  - 458
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/
LA  - ru
ID  - MZM_2007_82_3_a11
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On the Strong CE-Property of Convex Sets
%J Matematičeskie zametki
%D 2007
%P 441-458
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/
%G ru
%F MZM_2007_82_3_a11
M. E. Shirokov. On the Strong CE-Property of Convex Sets. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 441-458. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a11/