Von Neumann $J$-Algebras in a Space with Two Symmetries
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 232-241
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that a von Neumann $J$-algebra $\mathscr A$ of type $(\mathrm B)$ does not contain $J$-positive ($J$-negative) operators. $J$-projections in $\mathscr A$ are characterized. The class of plus-operators that are simultaneously self-adjoint and $J$-self-adjoint is described.
Keywords:
von Neumann algebra, indefinite metric, plus-operator, $J$-algebra, Hilbert space, polar decomposition of an operator.
@article{MZM_2007_82_2_a7,
author = {M. S. Matveichuk},
title = {Von {Neumann} $J${-Algebras} in a {Space} with {Two} {Symmetries}},
journal = {Matemati\v{c}eskie zametki},
pages = {232--241},
year = {2007},
volume = {82},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a7/}
}
M. S. Matveichuk. Von Neumann $J$-Algebras in a Space with Two Symmetries. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 232-241. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a7/
[1] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl
[2] M. M. Meltser, “O klassifikatsii $J$-algebr Neimana”, Funkts. analiz i ego pril., 13:4 (1979), 83–84 | MR
[3] M. S. Matvejchuk, “Probability masure in $W^*J$-algebras in Hilbert spaces with conjugation”, Proc. Amer. Math. Soc., 126:4 (1998), 1155–1164 | DOI | MR | Zbl