Existence of Fixed Points for Mappings of Finite Sets
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 201-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the existence theorem for zeros of a vector field (fixed points of a mapping) holds in the case of a “convex” finite set $X$ and a “continuous” vector field (a self-mapping) directed inwards into the convex hull $\operatorname{co}X$ of $X$. The main goal is to give correct definitions of the notions of “continuity” and “convexity”. We formalize both these notions using a reflexive and symmetric binary relation on $X$, i.e., using a proximity relation. Continuity (we shall say smoothness) is formulated with respect to any proximity relation, and an additional requirement on the proximity (we shall call it the acyclicity condition) transforms $X$ into a “convex” set. If these two requirements are satisfied, then the vector field has a zero (i.e., a fixed point).
Keywords: Brouwer fixed-point theorem, self-mapping, vector field on a finite set, convexity binary relation, proximity relation, acyclic set.
@article{MZM_2007_82_2_a4,
     author = {V. I. Danilov and G. A. Koshevoy},
     title = {Existence of {Fixed} {Points} for {Mappings} of {Finite} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {201--206},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a4/}
}
TY  - JOUR
AU  - V. I. Danilov
AU  - G. A. Koshevoy
TI  - Existence of Fixed Points for Mappings of Finite Sets
JO  - Matematičeskie zametki
PY  - 2007
SP  - 201
EP  - 206
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a4/
LA  - ru
ID  - MZM_2007_82_2_a4
ER  - 
%0 Journal Article
%A V. I. Danilov
%A G. A. Koshevoy
%T Existence of Fixed Points for Mappings of Finite Sets
%J Matematičeskie zametki
%D 2007
%P 201-206
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a4/
%G ru
%F MZM_2007_82_2_a4
V. I. Danilov; G. A. Koshevoy. Existence of Fixed Points for Mappings of Finite Sets. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 201-206. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a4/

[1] T. Iimura, “A discrete fixed point theorem and its applications”, J. Math. Econom., 39:7 (2003), 725–742 | DOI | MR | Zbl

[2] T. Iimura, K. Murota, A. Tamura, Discrete fixed point theorem reconsidered, METR 2004-09, Tokyo, Japan | MR

[3] S. Eilenberg, D. Montgomery, “Fixed point theorems for multivalued transformations”, Amer. J. Math., 68:2 (1946), 214–222 | DOI | MR | Zbl