Canonical Representatives in Strict Isomorphism Classes of Formal Groups
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 183-189
Cet article a éte moissonné depuis la source Math-Net.Ru
The aim of the present paper is to explicitly construct canonical representatives in every strict isomorphism class of commutative formal groups over an arbitrary torsion-free ring. The case of an $\mathbb Z_{(p)}$-algebra is treated separately. We prove that, under natural conditions on a subring, the canonical representatives of formal groups over the subring agree with the representatives for the ring. Necessary and sufficient conditions for a mapping induced on strict isomorphism classes of formal groups by a homomorphism of torsion-free rings to be injective and surjective are established.
Keywords:
commutative formal group, strict isomorphism, torsion-free ring, canonical representatives, universal curvilinear law.
@article{MZM_2007_82_2_a2,
author = {M. V. Bondarko},
title = {Canonical {Representatives} in {Strict} {Isomorphism} {Classes} of {Formal} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {183--189},
year = {2007},
volume = {82},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a2/}
}
M. V. Bondarko. Canonical Representatives in Strict Isomorphism Classes of Formal Groups. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 183-189. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a2/
[1] M. Hazewinkel, Formal Groups and Applications, Pure and Applied Mathematics, 78, Academic Press, New York–London, 1978 | MR | Zbl
[2] M. V. Bondarko, S. V. Vostokov, “Yavnaya klassifikatsiya formalnykh grupp nad lokalnymi polyami”, Teoriya chisel, algebra i algebraicheskaya geometriya, K 80-letiyu so dnya rozhd. akad. I. R. Shafarevicha, Tr. MIAN, 241, Nauka, M., 2003, 43–67 | MR | Zbl
[3] M. V. Bondarko, “Yavnaya klassifikatsiya formalnykh grupp nad polnymi diskretno normirovannymi polyami s nesovershennym polem vychetov”, Tr. SPb MO, 11, 2005, 1–36
[4] T. Honda, “On the theory of commutative formal groups”, J. Math. Soc. Japan, 22 (1970), 213–246 | MR | Zbl