Canonical Representatives in Strict Isomorphism Classes of Formal Groups
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 183-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present paper is to explicitly construct canonical representatives in every strict isomorphism class of commutative formal groups over an arbitrary torsion-free ring. The case of an $\mathbb Z_{(p)}$-algebra is treated separately. We prove that, under natural conditions on a subring, the canonical representatives of formal groups over the subring agree with the representatives for the ring. Necessary and sufficient conditions for a mapping induced on strict isomorphism classes of formal groups by a homomorphism of torsion-free rings to be injective and surjective are established.
Keywords: commutative formal group, strict isomorphism, torsion-free ring, canonical representatives, universal curvilinear law.
@article{MZM_2007_82_2_a2,
     author = {M. V. Bondarko},
     title = {Canonical {Representatives} in {Strict} {Isomorphism} {Classes} of {Formal} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {183--189},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a2/}
}
TY  - JOUR
AU  - M. V. Bondarko
TI  - Canonical Representatives in Strict Isomorphism Classes of Formal Groups
JO  - Matematičeskie zametki
PY  - 2007
SP  - 183
EP  - 189
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a2/
LA  - ru
ID  - MZM_2007_82_2_a2
ER  - 
%0 Journal Article
%A M. V. Bondarko
%T Canonical Representatives in Strict Isomorphism Classes of Formal Groups
%J Matematičeskie zametki
%D 2007
%P 183-189
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a2/
%G ru
%F MZM_2007_82_2_a2
M. V. Bondarko. Canonical Representatives in Strict Isomorphism Classes of Formal Groups. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 183-189. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a2/

[1] M. Hazewinkel, Formal Groups and Applications, Pure and Applied Mathematics, 78, Academic Press, New York–London, 1978 | MR | Zbl

[2] M. V. Bondarko, S. V. Vostokov, “Yavnaya klassifikatsiya formalnykh grupp nad lokalnymi polyami”, Teoriya chisel, algebra i algebraicheskaya geometriya, K 80-letiyu so dnya rozhd. akad. I. R. Shafarevicha, Tr. MIAN, 241, Nauka, M., 2003, 43–67 | MR | Zbl

[3] M. V. Bondarko, “Yavnaya klassifikatsiya formalnykh grupp nad polnymi diskretno normirovannymi polyami s nesovershennym polem vychetov”, Tr. SPb MO, 11, 2005, 1–36

[4] T. Honda, “On the theory of commutative formal groups”, J. Math. Soc. Japan, 22 (1970), 213–246 | MR | Zbl