Lower Bounds for Positive and Negative Parts of Measures and the Arrangement of Singularities of Their Laplace Transforms
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 84-98
Voir la notice de l'article provenant de la source Math-Net.Ru
For a real measure with variation $V(x)$ satisfying the estimate $V(x)\le c_0\exp(Cx)$ and with the Laplace transform holomorphic in the disk $\{|s-C|\le C\}$ and having at least one pole of order $m$, we obtain lower bounds for the positive and negative parts of the measure $V_\pm(x)>cx^m$, $x>x_0$. We establish lower bounds for $V_\pm(x)$ on “short” intervals. Applications to number theory of the results obtained are considered.
Keywords:
real measure, positive and negative parts of a measure, analytic function, pole of a meromorphic function, Möbius function, Riemann zeta function.
Mots-clés : Laplace transform
Mots-clés : Laplace transform
@article{MZM_2007_82_1_a9,
author = {A. Yu. Popov and A. P. Solodov},
title = {Lower {Bounds} for {Positive} and {Negative} {Parts} of {Measures} and the {Arrangement} of {Singularities} of {Their} {Laplace} {Transforms}},
journal = {Matemati\v{c}eskie zametki},
pages = {84--98},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a9/}
}
TY - JOUR AU - A. Yu. Popov AU - A. P. Solodov TI - Lower Bounds for Positive and Negative Parts of Measures and the Arrangement of Singularities of Their Laplace Transforms JO - Matematičeskie zametki PY - 2007 SP - 84 EP - 98 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a9/ LA - ru ID - MZM_2007_82_1_a9 ER -
%0 Journal Article %A A. Yu. Popov %A A. P. Solodov %T Lower Bounds for Positive and Negative Parts of Measures and the Arrangement of Singularities of Their Laplace Transforms %J Matematičeskie zametki %D 2007 %P 84-98 %V 82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a9/ %G ru %F MZM_2007_82_1_a9
A. Yu. Popov; A. P. Solodov. Lower Bounds for Positive and Negative Parts of Measures and the Arrangement of Singularities of Their Laplace Transforms. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 84-98. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a9/