On Isometric Immersions with Flat Normal Connection of the Hyperbolic Space~$L^n$ Into Euclidean Space~$E^{n+m}$
Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 11-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the hyperbolic space $L^n$ cannot be immersed in an Euclidean space $E^{n+m}$ with a flat normal connection provided the module of the mean curvature vector is bounded.
Keywords: immersion, mean curvature, flat normal connection, hyperbolic space, Grassmanian image, quasiisometric space.
Mots-clés : principal directions
@article{MZM_2007_82_1_a1,
     author = {D. V. Bolotov},
     title = {On {Isometric} {Immersions} with {Flat} {Normal} {Connection} of the {Hyperbolic} {Space~}$L^n$ {Into} {Euclidean} {Space~}$E^{n+m}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--13},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a1/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - On Isometric Immersions with Flat Normal Connection of the Hyperbolic Space~$L^n$ Into Euclidean Space~$E^{n+m}$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 11
EP  - 13
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a1/
LA  - ru
ID  - MZM_2007_82_1_a1
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T On Isometric Immersions with Flat Normal Connection of the Hyperbolic Space~$L^n$ Into Euclidean Space~$E^{n+m}$
%J Matematičeskie zametki
%D 2007
%P 11-13
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a1/
%G ru
%F MZM_2007_82_1_a1
D. V. Bolotov. On Isometric Immersions with Flat Normal Connection of the Hyperbolic Space~$L^n$ Into Euclidean Space~$E^{n+m}$. Matematičeskie zametki, Tome 82 (2007) no. 1, pp. 11-13. http://geodesic.mathdoc.fr/item/MZM_2007_82_1_a1/