Bessel Sequences as Projections of Orthogonal Systems
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 893-903.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove generalizations of the Schur and Olevskii theorems on the continuation of systems of functions from an interval $I$ to orthogonal systems on an interval $J$, $I\subset J$. Only Bessel systems in $L^2(I)$ are projections of orthogonal systems from the wider space $L^2(J)$. This fact allows us to use a certain method for transferring the classical theorems on the almost everywhere convergence of orthogonal series (the Menshov–Rademacher, Paley–Zygmund, and Garcia theorems) to series in Bessel systems. The projection of a complete orthogonal system from $L^2(J)$ onto $L^2(I)$ is a tight frame, but not a basis.
Keywords: Bessel sequence, orthogonal system, tight frame, complex Hilbert space, Schur criterion, Menshov–Rademacher theorem, Paley–Zygmund theorem
Mots-clés : Gram matrix.
@article{MZM_2007_81_6_a7,
     author = {S. Ya. Novikov},
     title = {Bessel {Sequences} as {Projections} of {Orthogonal} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {893--903},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a7/}
}
TY  - JOUR
AU  - S. Ya. Novikov
TI  - Bessel Sequences as Projections of Orthogonal Systems
JO  - Matematičeskie zametki
PY  - 2007
SP  - 893
EP  - 903
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a7/
LA  - ru
ID  - MZM_2007_81_6_a7
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%T Bessel Sequences as Projections of Orthogonal Systems
%J Matematičeskie zametki
%D 2007
%P 893-903
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a7/
%G ru
%F MZM_2007_81_6_a7
S. Ya. Novikov. Bessel Sequences as Projections of Orthogonal Systems. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 893-903. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a7/

[1] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyar. i khaotich. dinamika”, M.–Izhevsk, 2001 | MR | Zbl

[2] B. S. Kashin, T. Yu. Kulikova, “Zamechanie ob opisanii freimov obschego vida”, Matem. zametki, 72:6 (2002), 941–945 | MR | Zbl

[3] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005 | MR | Zbl

[4] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003 | MR | Zbl

[5] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[6] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, AFTs, M., 1999 | MR | Zbl

[7] A. M. Olevskii, Fourier Series with Respect to General Orthogonal Systems, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[8] B. M. Makarov, “$p$-absolyutno summiruyuschie operatory i nekotorye ikh prilozheniya”, Algebra i analiz, 3:2 (1991), 1–76 | MR | Zbl

[9] T. P. Lukashenko, “O koeffitsientakh sistem razlozheniya, podobnykh ortogonalnym”, Matem. sbornik, 188:12 (1997), 57–72 | MR | Zbl

[10] T. P. Lukashenko, T. V. Rodionov, “O skhodimosti ryadov po obobschennym ortopodobnym sistemam”, Fundam. i prikl. matem., 6:3 (2000), 813–829 | MR | Zbl