Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_6_a5, author = {A. G. Losev and Yu. S. Fedorenko}, title = {Positive {Solutions} of {Quasilinear} {Elliptic} {Inequalities} on {Noncompact} {Riemannian} {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {867--878}, publisher = {mathdoc}, volume = {81}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/} }
TY - JOUR AU - A. G. Losev AU - Yu. S. Fedorenko TI - Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds JO - Matematičeskie zametki PY - 2007 SP - 867 EP - 878 VL - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/ LA - ru ID - MZM_2007_81_6_a5 ER -
A. G. Losev; Yu. S. Fedorenko. Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 867-878. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/
[1] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl
[2] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249 | DOI | MR | Zbl
[3] A. G. Losev, “O nekotorykh liuvilevykh teoremakh na nekompaktnykh rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 39:1 (1998), 87–93 | MR | Zbl
[4] A. G. Losev, E. A. Mazepa, “Ogranichennye resheniya uravneniya Shredingera na rimanovykh proizvedeniyakh”, Algebra i analiz, 13:1 (2001), 84–110 | MR | Zbl
[5] V. M. Miklyukov, V. G. Tkachev, “Denjoy–Alfors's theorem for harmonic functions on Riemannian manifolds and external structure of minimal surfaces”, Comm. Anal. Geom., 4:4 (1996), 547–587 | MR | Zbl
[6] E. Mitidieri, S. I. Pokhozhaev, “Otsutstvie globalnykh polozhitelnykh reshenii kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | MR | Zbl
[7] J. Serrin, H. Zou, “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta. Math., 189:1 (2002), 79–142 | DOI | MR | Zbl