Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 867-878.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the generalized solutions of the inequality $$ -\operatorname{div}(A(x,u,\nabla u)\nabla u)\ge F(x,u,\nabla u)u^q,\qquad q>1, $$ on noncompact Riemannian manifolds. We obtain sufficient conditions for the validity of Liouville's theorem on the triviality of the positive solutions of the inequality under consideration. We also obtain sharp conditions for the existence of a positive solution of the inequality $-\Delta u\ge u^q$, $q>1$, on spherically symmetric noncompact Riemannian manifolds.
Keywords: quasilinear elliptic inequality, Riemannian manifold, theorem of Liouville type, Lipschitz function, quasisimilar manifold, Laplace–Beltrami operator.
@article{MZM_2007_81_6_a5,
     author = {A. G. Losev and Yu. S. Fedorenko},
     title = {Positive {Solutions} of {Quasilinear} {Elliptic} {Inequalities} on {Noncompact} {Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {867--878},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/}
}
TY  - JOUR
AU  - A. G. Losev
AU  - Yu. S. Fedorenko
TI  - Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2007
SP  - 867
EP  - 878
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/
LA  - ru
ID  - MZM_2007_81_6_a5
ER  - 
%0 Journal Article
%A A. G. Losev
%A Yu. S. Fedorenko
%T Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds
%J Matematičeskie zametki
%D 2007
%P 867-878
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/
%G ru
%F MZM_2007_81_6_a5
A. G. Losev; Yu. S. Fedorenko. Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 867-878. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/

[1] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl

[2] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249 | DOI | MR | Zbl

[3] A. G. Losev, “O nekotorykh liuvilevykh teoremakh na nekompaktnykh rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 39:1 (1998), 87–93 | MR | Zbl

[4] A. G. Losev, E. A. Mazepa, “Ogranichennye resheniya uravneniya Shredingera na rimanovykh proizvedeniyakh”, Algebra i analiz, 13:1 (2001), 84–110 | MR | Zbl

[5] V. M. Miklyukov, V. G. Tkachev, “Denjoy–Alfors's theorem for harmonic functions on Riemannian manifolds and external structure of minimal surfaces”, Comm. Anal. Geom., 4:4 (1996), 547–587 | MR | Zbl

[6] E. Mitidieri, S. I. Pokhozhaev, “Otsutstvie globalnykh polozhitelnykh reshenii kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | MR | Zbl

[7] J. Serrin, H. Zou, “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta. Math., 189:1 (2002), 79–142 | DOI | MR | Zbl