Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 867-878
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the generalized solutions of the inequality
$$
-\operatorname{div}(A(x,u,\nabla u)\nabla u)\ge
F(x,u,\nabla u)u^q,\qquad
q>1,
$$
on noncompact Riemannian manifolds. We obtain sufficient conditions for the validity of Liouville's theorem on the triviality of the positive solutions of the inequality under consideration. We also obtain sharp conditions for the existence of a positive solution of the inequality $-\Delta u\ge u^q$, $q>1$, on spherically symmetric noncompact Riemannian manifolds.
Keywords:
quasilinear elliptic inequality, Riemannian manifold, theorem of Liouville type, Lipschitz function, quasisimilar manifold, Laplace–Beltrami operator.
@article{MZM_2007_81_6_a5,
author = {A. G. Losev and Yu. S. Fedorenko},
title = {Positive {Solutions} of {Quasilinear} {Elliptic} {Inequalities} on {Noncompact} {Riemannian} {Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {867--878},
publisher = {mathdoc},
volume = {81},
number = {6},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/}
}
TY - JOUR AU - A. G. Losev AU - Yu. S. Fedorenko TI - Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds JO - Matematičeskie zametki PY - 2007 SP - 867 EP - 878 VL - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/ LA - ru ID - MZM_2007_81_6_a5 ER -
A. G. Losev; Yu. S. Fedorenko. Positive Solutions of Quasilinear Elliptic Inequalities on Noncompact Riemannian Manifolds. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 867-878. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a5/