Inverse Spectral Problem for Integro-Differential Operators
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 855-866

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the inverse spectral problem on a finite interval for the integro-differential operator $\ell$ which is the perturbation of the Sturm–Liouville operator by the Volterra integral operator. The potential $q$ belongs to $L_2[0,\pi]$ and the kernel of the integral perturbation is integrable in its domain of definition. We obtain a local solution of the inverse reconstruction problem for the potential $q$, given the kernel of the integral perturbation, and prove the stability of this solution. For the spectral data we take the spectra of two operators given by the expression for $\ell$ and by two pairs of boundary conditions coinciding at one of the finite points.
Keywords: integro-differential operator, inverse spectral problem, nonlinear integral equation, Sturm–Liouville operator, Volterra integral operator, inverse problem, Cauchy–Bunyakovskii inequality.
@article{MZM_2007_81_6_a4,
     author = {Yu. V. Kuryshova},
     title = {Inverse {Spectral} {Problem} for {Integro-Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--866},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/}
}
TY  - JOUR
AU  - Yu. V. Kuryshova
TI  - Inverse Spectral Problem for Integro-Differential Operators
JO  - Matematičeskie zametki
PY  - 2007
SP  - 855
EP  - 866
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/
LA  - ru
ID  - MZM_2007_81_6_a4
ER  - 
%0 Journal Article
%A Yu. V. Kuryshova
%T Inverse Spectral Problem for Integro-Differential Operators
%J Matematičeskie zametki
%D 2007
%P 855-866
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/
%G ru
%F MZM_2007_81_6_a4
Yu. V. Kuryshova. Inverse Spectral Problem for Integro-Differential Operators. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 855-866. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/