Inverse Spectral Problem for Integro-Differential Operators
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 855-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the inverse spectral problem on a finite interval for the integro-differential operator $\ell$ which is the perturbation of the Sturm–Liouville operator by the Volterra integral operator. The potential $q$ belongs to $L_2[0,\pi]$ and the kernel of the integral perturbation is integrable in its domain of definition. We obtain a local solution of the inverse reconstruction problem for the potential $q$, given the kernel of the integral perturbation, and prove the stability of this solution. For the spectral data we take the spectra of two operators given by the expression for $\ell$ and by two pairs of boundary conditions coinciding at one of the finite points.
Keywords: integro-differential operator, inverse spectral problem, nonlinear integral equation, Sturm–Liouville operator, Volterra integral operator, inverse problem, Cauchy–Bunyakovskii inequality.
@article{MZM_2007_81_6_a4,
     author = {Yu. V. Kuryshova},
     title = {Inverse {Spectral} {Problem} for {Integro-Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--866},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/}
}
TY  - JOUR
AU  - Yu. V. Kuryshova
TI  - Inverse Spectral Problem for Integro-Differential Operators
JO  - Matematičeskie zametki
PY  - 2007
SP  - 855
EP  - 866
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/
LA  - ru
ID  - MZM_2007_81_6_a4
ER  - 
%0 Journal Article
%A Yu. V. Kuryshova
%T Inverse Spectral Problem for Integro-Differential Operators
%J Matematičeskie zametki
%D 2007
%P 855-866
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/
%G ru
%F MZM_2007_81_6_a4
Yu. V. Kuryshova. Inverse Spectral Problem for Integro-Differential Operators. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 855-866. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a4/

[1] N. K. Bari, “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchenye zapiski MGU, 148 (1951), 69–107 | MR

[2] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78:1 (1946), 1–96 | DOI | MR | Zbl

[3] M. S. Erëmin, “Obratnaya zadacha dlya integrodifferentsialnykh uravnenii vtorogo poryadka s osobennostyu”, Differents. uravneniya, 24:2 (1988), 350–351 | Zbl

[4] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[5] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[6] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[7] S. B. Norkin, Differentsialnye uravneniya vtorogo poryadka s zapazdyvayuschim argumentom: Nekotorye voprosy teorii kolebanii sistem s zapazdyvaniem, Nauka, M., 1965 | MR | Zbl

[8] A. P. Khromov, “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114 (156):3 (1981), 378–405 | MR | Zbl

[9] V. A. Yurko, “Obratnaya zadacha dlya integro-differentsialnykh operatorov”, Matem. zametki, 50:5 (1991), 134–146 | MR | Zbl

[10] V. A. Yurko, Obratnye zadachi spektralnogo analiza, Izd-vo Saratov. ped. in-ta, Saratov, 2001

[11] Yu. V. Kuryshova, Obratnaya zadacha dlya integrodifferentsialnykh operatorov, Diss. ...dokt. fiz.-matem. nauk, Izd-vo Saratov. gos. un-ta, Saratov, 2002