Reducibility of Monadic Equivalence Relations
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 842-854.

Voir la notice de l'article provenant de la source Math-Net.Ru

Each additive cut in the nonstandard natural numbers $\!{}^*{\mathbb N}$ induces the equivalence relation $\operatorname M_U$ on $\!{}^*{\mathbb N}$ defined as $x\operatorname M_Uy$ if $|x-y|\in U$. Such equivalence relations are said to be monadic. Reducibility between monadic equivalence relations is studied. The main result (Theorem 3.1) is that reducibility can be defined in terms of cofinality (or coinitiality) and a special parameter of a cut, called its width. Smoothness and the existence of transversals are also considered. The results obtained are similar to theorems of modern descriptive set theory on the reducibility of Borel equivalence relations.
Keywords: nonstandard analysis, additive cut of the hyperintegers, $\kappa$-determined set, $\kappa$-determined reducibility, width of a cut.
Mots-clés : monadic equivalence relation
@article{MZM_2007_81_6_a3,
     author = {V. G. Kanovei and V. A. Lyubetskii and M. Reeken},
     title = {Reducibility of {Monadic} {Equivalence} {Relations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {842--854},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a3/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
AU  - M. Reeken
TI  - Reducibility of Monadic Equivalence Relations
JO  - Matematičeskie zametki
PY  - 2007
SP  - 842
EP  - 854
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a3/
LA  - ru
ID  - MZM_2007_81_6_a3
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%A M. Reeken
%T Reducibility of Monadic Equivalence Relations
%J Matematičeskie zametki
%D 2007
%P 842-854
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a3/
%G ru
%F MZM_2007_81_6_a3
V. G. Kanovei; V. A. Lyubetskii; M. Reeken. Reducibility of Monadic Equivalence Relations. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 842-854. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a3/

[1] H. J. Keisler, K. Kunen, A. Miller, S. Leth, “Descriptive set theory over hyperfinite sets”, J. Symbolic Logic, 54:4 (1989), 1167–1180 | DOI | MR | Zbl

[2] H. J. Keisler, S. C. Leth, “Meager sets on the hyperfinite time line”, J. Symbolic Logic, 56:1 (1991), 71–102 | DOI | MR | Zbl

[3] R. Jin, “Existence of some sparse sets of nonstandard natural numbers”, J. Symbolic Logic, 66:2 (2001), 959–973 | DOI | MR | Zbl

[4] V. Kanovei, M. Reeken, “Borel and countably determined reducibility in nonstandard domain”, Monatsh. Math., 140:3 (2003), 197–231 | DOI | MR | Zbl

[5] V. Kanovei, M. Reeken, Nonstandard Analysis, Axiomatically, Springer Monographs in Mathematics, Springer, Berlin, 2004 | MR | Zbl

[6] G. Hjorth, “Classification and Orbit Equivalence Relations”, Mathematical Surveys and Monographs, 75, AMS, Providence, RI, 2000 | MR | Zbl

[7] A. S. Kechris, “New directions in descriptive set theory”, Bull. Symbolic Logic, 5:2 (1999), 161–174 | DOI | MR | Zbl

[8] E. I. Gordon, A. G. Kusraev, S. S. Kutateladze, Infinitezimalnyi analiz, ch. 1, 2, Izd-vo IM RAN, Novosibirsk, 2001 | MR | Zbl | Zbl

[9] V. A. Uspenskii, Chto takoe nestandartnyi analiz?, Nauka, M., 1987 | MR | Zbl

[10] T. Lindstrøm, “An invitation to nonstandard analysis”, Nonstandard Analysis and its Applications (Hull, 1986), London Math. Soc. Stud. Texts, 10, Cambridge Univ. Press, Cambridge, 1988, 1–105 | MR | Zbl

[11] A. Robinson, Non-standard Analysis, North-Holland Publishing Co., Amsterdam, 1966 | MR | Zbl

[12] G. Keisler, Ch. Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR | Zbl

[13] V. G. Kanovei, “Idei A. N. Kolmogorova v teorii operatsii nad mnozhestvami”, UMN, 43:6 (1988), 93–128 | MR | Zbl

[14] K. Čuda, P. Vopenka, “Real and imaginary classes in the alternative set theory”, Comment. Math. Univ. Carolin., 20:4 (1979), 639–653 | MR | Zbl

[15] C. W. Henson, “Unbounded Loeb measures”, Proc. Amer. Math. Soc., 64:1 (1979), 143–150 | DOI | MR | Zbl