Random $A$-Permutations: Convergence to a Poisson Process
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 939-947

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $S_n$ is the permutation group of degree $n$, $A$ is a subset of the set of natural numbers $\mathbb N$, and $T_n=T_n(A)$ is the set of all permutations from $S_n$ whose cycle lengths belong to the set $A$. Permutations from $T_n$ are usually called $A$-permutations. We consider a wide class of sets $A$ of positive asymptotic density. Suppose that $\zeta_{mn}$ is the number of cycles of length $m$ of a random permutation uniformly distributed on $T_n$. It is shown in this paper that the finite-dimensional distributions of the random process $\{\zeta_{mn},m\in A\}$ weakly converge as $n\to\infty$ to the finite-dimensional distributions of a Poisson process on $A$.
Keywords: random permutation, total variance distance
Mots-clés : Poisson process, permutation group, permutation cycle, normal distribution.
@article{MZM_2007_81_6_a11,
     author = {A. L. Yakymiv},
     title = {Random $A${-Permutations:} {Convergence} to a {Poisson} {Process}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {939--947},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a11/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Random $A$-Permutations: Convergence to a Poisson Process
JO  - Matematičeskie zametki
PY  - 2007
SP  - 939
EP  - 947
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a11/
LA  - ru
ID  - MZM_2007_81_6_a11
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Random $A$-Permutations: Convergence to a Poisson Process
%J Matematičeskie zametki
%D 2007
%P 939-947
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a11/
%G ru
%F MZM_2007_81_6_a11
A. L. Yakymiv. Random $A$-Permutations: Convergence to a Poisson Process. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 939-947. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a11/