On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 924-938.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a construction of affinely self-similar functions. In terms of the parameters of self-similarity transformations, a condition is given for these functions to belong to the classes $L_p[0,1]$ as well as to the space $C[0,1]$. Some properties of these functions (monotonicity and bounded variation) are studied. A relationship between self-similar functions and self-similar measures is established.
Keywords: self-similar function, self-similar measure, fractal curve, monotonicity, function of bounded variation
Mots-clés : Lebesgue classes.
@article{MZM_2007_81_6_a10,
     author = {I. A. Sheipak},
     title = {On the {Construction} and {Some} {Properties} of {Self-Similar} {Functions} in the {Spaces} $L_p[0,1]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {924--938},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/}
}
TY  - JOUR
AU  - I. A. Sheipak
TI  - On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 924
EP  - 938
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/
LA  - ru
ID  - MZM_2007_81_6_a10
ER  - 
%0 Journal Article
%A I. A. Sheipak
%T On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$
%J Matematičeskie zametki
%D 2007
%P 924-938
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/
%G ru
%F MZM_2007_81_6_a10
I. A. Sheipak. On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 924-938. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/

[1] J. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl

[2] M. Barnsley, Fractals Everywhere, Academic Press, Boston, 1988 | MR | Zbl

[3] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[4] R. S. Strihartz, “Self-similar measures and their Fourier transform, I”, Indiana Univ. Math. J., 39:3 (1990), 797–817 | DOI | MR | Zbl

[5] A. Zigmund, Trigonometricheskie ryady, 1, Mir, M., 1965 | MR | Zbl

[6] G. de Rham, “Un peu de mathématique à propos d'une courbe plane”, Elem. Math., 2:4, 5 (1947), 73–76, 89–97 | MR

[7] G. de Rham, “Sur une courbe plane”, J. Math. Pures Appl. (9), 35 (1956), 25–42 | MR | Zbl

[8] G. de Rham, “Sur les courbes limités de polygones obtenus par trisection”, Enseign. Math. (2), 5 (1959), 29–43 | MR | Zbl

[9] A. S. Cavaretta, W. Dahmen, C. A. Micchelli, “Stationary dubdivision”, Mem. Amer. Math. Soc., 93:453 (1991) | MR | Zbl

[10] G. A. Derfel, “Veroyatnostnye metody dlya odnogo klassa funktsionalno-raznostnykh uravnenii”, Ukr. matem. zhurn., 41:10 (1989), 1137–1141 | MR | Zbl

[11] P. P. Nikitin, “Khausdorfova razmernost garmonicheskoi mery na krivoi de Rama”, Zapiski nauchn. sem. POMI, 283 (2001), 206–223 | MR | Zbl

[12] I. Daubechies, J. Lagarias, “Two scale difference equations. I. Existence and global regularity of solutions”, SIAM J. Math. Anal., 22:5 (1991), 1388–1410 | DOI | MR | Zbl

[13] I. Daubechies, J. Lagarias, “Two scale difference equations. I. Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl

[14] V. Protasov, “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:1 (2000), 55–78 | DOI | MR | Zbl

[15] V. Yu. Protasov, “Fraktalnye krivye i vspleski”, Izv. RAN. Ser. matem., 70:5 (2006), 123–162 | MR | Zbl

[16] K.-S. Lau, J. Wang, “Characterization of $L_p$-solutions for two-scale dilation equations”, SIAM J. Math. Anal., 26:4 (1995), 1018–1046 | DOI | MR | Zbl

[17] I. S. Kats, M. G. Krein., “O spektralnykh funktsiyakh struny”, F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, M., 1968, 648–733 | MR | Zbl

[18] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR | Zbl