On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$
Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 924-938

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a construction of affinely self-similar functions. In terms of the parameters of self-similarity transformations, a condition is given for these functions to belong to the classes $L_p[0,1]$ as well as to the space $C[0,1]$. Some properties of these functions (monotonicity and bounded variation) are studied. A relationship between self-similar functions and self-similar measures is established.
Keywords: self-similar function, self-similar measure, fractal curve, monotonicity, function of bounded variation
Mots-clés : Lebesgue classes.
@article{MZM_2007_81_6_a10,
     author = {I. A. Sheipak},
     title = {On the {Construction} and {Some} {Properties} of {Self-Similar} {Functions} in the {Spaces} $L_p[0,1]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {924--938},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/}
}
TY  - JOUR
AU  - I. A. Sheipak
TI  - On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 924
EP  - 938
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/
LA  - ru
ID  - MZM_2007_81_6_a10
ER  - 
%0 Journal Article
%A I. A. Sheipak
%T On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$
%J Matematičeskie zametki
%D 2007
%P 924-938
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/
%G ru
%F MZM_2007_81_6_a10
I. A. Sheipak. On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$. Matematičeskie zametki, Tome 81 (2007) no. 6, pp. 924-938. http://geodesic.mathdoc.fr/item/MZM_2007_81_6_a10/