On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 693-702

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the integral convolution equation on the half-line or on a finite interval with kernel $$ K(x-t)=\int_a^be^{-|x-t|s}\,d\sigma(s) $$ with an alternating measure $d\sigma$ under the conditions $$ K(x)>0, \quad \int_a^b\frac{1}{s}\,|d\sigma(s)|+\infty, \quad \int_{-\infty}^\infty K(x)\,dx=2\int_a^b\frac{1}{s}\,d\sigma(s)\le1. $$ The solution of the nonlinear Ambartsumyan equation $$ \varphi(s)=1+\varphi(s)\int_a^b\frac{\varphi(p)}{s+p}\,d\sigma(p), $$ is constructed; it can be effectively used for solving the original convolution equation.
Keywords: integral convolution equation, nonlinear Ambartsumyan equation, alternating measure, Wiener–Hopf operator, nonlinear factorization equation
Mots-clés : Volterra equation.
@article{MZM_2007_81_5_a5,
     author = {B. N. Enginbarian},
     title = {On the {Convolution} {Equation} with {Positive} {Kernel} {Expressed} via an {Alternating} {Measure}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--702},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/}
}
TY  - JOUR
AU  - B. N. Enginbarian
TI  - On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure
JO  - Matematičeskie zametki
PY  - 2007
SP  - 693
EP  - 702
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/
LA  - ru
ID  - MZM_2007_81_5_a5
ER  - 
%0 Journal Article
%A B. N. Enginbarian
%T On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure
%J Matematičeskie zametki
%D 2007
%P 693-702
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/
%G ru
%F MZM_2007_81_5_a5
B. N. Enginbarian. On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 693-702. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/