On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 693-702.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the integral convolution equation on the half-line or on a finite interval with kernel $$ K(x-t)=\int_a^be^{-|x-t|s}\,d\sigma(s) $$ with an alternating measure $d\sigma$ under the conditions $$ K(x)>0, \quad \int_a^b\frac{1}{s}\,|d\sigma(s)|+\infty, \quad \int_{-\infty}^\infty K(x)\,dx=2\int_a^b\frac{1}{s}\,d\sigma(s)\le1. $$ The solution of the nonlinear Ambartsumyan equation $$ \varphi(s)=1+\varphi(s)\int_a^b\frac{\varphi(p)}{s+p}\,d\sigma(p), $$ is constructed; it can be effectively used for solving the original convolution equation.
Keywords: integral convolution equation, nonlinear Ambartsumyan equation, alternating measure, Wiener–Hopf operator, nonlinear factorization equation
Mots-clés : Volterra equation.
@article{MZM_2007_81_5_a5,
     author = {B. N. Enginbarian},
     title = {On the {Convolution} {Equation} with {Positive} {Kernel} {Expressed} via an {Alternating} {Measure}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--702},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/}
}
TY  - JOUR
AU  - B. N. Enginbarian
TI  - On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure
JO  - Matematičeskie zametki
PY  - 2007
SP  - 693
EP  - 702
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/
LA  - ru
ID  - MZM_2007_81_5_a5
ER  - 
%0 Journal Article
%A B. N. Enginbarian
%T On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure
%J Matematičeskie zametki
%D 2007
%P 693-702
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/
%G ru
%F MZM_2007_81_5_a5
B. N. Enginbarian. On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 693-702. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/

[1] V. A. Ambartsumyan, Nauchnye trudy, t. 1, Izd-vo AN ArmSSR, Erevan, 1960 | MR | Zbl

[2] S. Chandrasekar, Perenos luchistoi energii, IL, M., 1953 | MR | Zbl

[3] V. V. Sobolev, Rasseyanie sveta v atmosferakh planet, Nauka, M., 1972

[4] C. Cercignani, Theory and Application of the Boltzmann Equation, Scott. Acad. Press, Edinburgh–London, 1975 | MR | Zbl

[5] N. B. Engibaryan, A. A. Arutyunyan, “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97 (139):1 (5) (1975), 35–58 | MR | Zbl

[6] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Matem. analiz, 22, VINITI, M., 1984, 175–244 | MR | Zbl

[7] I. Ts. Gokhberg, I. A. Feldman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR | Zbl

[8] L. A. Sakhnovich, “Uravneniya s raznostnym yadrom na konechnom otrezke”, UMN, 35:4 (1980), 69–129 | MR | Zbl

[9] J. Casti, R. Kalaba, Imbedding Methods in Applied Mathematics, Addison–Wesley Publ., Mass.–London–Amsterdam, 1973 | MR | Zbl

[10] N. B. Engibaryan, M. A. Mnatsakanyan, “Ob odnom integralnom uravnenii s raznostnym yadrom”, Matem. zametki, 19:6 (1976), 927–932 | MR | Zbl

[11] N. B. Engibaryan, B. N. Engibaryan, “Integralnoe uravnenie svertki na polupryamoi s vpolne monotonnym yadrom”, Matem. sb., 187:10 (1996), 53–72 | MR | Zbl

[12] B. N. Engibaryan, “O mnogokratnoi faktorizatsii integralnykh operatorov”, ZhVM i MF, 37:4 (1997), 447–458 | MR | Zbl

[13] V. V. Ivanov, G. B. Rybicky, A. M. Kasaurov, Albedo Shifting, prepint ser. no. 3478, Harvard–Smithsonian Center for Astrophysics, 1992

[14] N. B. Engibaryan, B. N. Engibaryan, “O metode sdviga Albedo”, Astrofizika, 38:3 (1995), 417–431 | MR

[15] A. Kh. Khachatryan, A. N. Afyan, “Ob analiticheskom i chislennom reshenii zadach perenosa izlucheniya pri nalichii otrazhayuschei poverkhnosti”, ZhVM i MF, 41:8 (2001), 1217–1228 | MR | Zbl