On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 693-702
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the integral convolution equation on the half-line or on a finite interval with kernel
$$
K(x-t)=\int_a^be^{-|x-t|s}\,d\sigma(s)
$$
with an alternating measure $d\sigma$ under the conditions
$$
K(x)>0, \quad
\int_a^b\frac{1}{s}\,|d\sigma(s)|+\infty, \quad
\int_{-\infty}^\infty K(x)\,dx=2\int_a^b\frac{1}{s}\,d\sigma(s)\le1.
$$
The solution of the nonlinear Ambartsumyan equation
$$
\varphi(s)=1+\varphi(s)\int_a^b\frac{\varphi(p)}{s+p}\,d\sigma(p),
$$
is constructed; it can be effectively used for solving the original convolution equation.
Keywords:
integral convolution equation, nonlinear Ambartsumyan equation, alternating measure, Wiener–Hopf operator, nonlinear factorization equation
Mots-clés : Volterra equation.
Mots-clés : Volterra equation.
@article{MZM_2007_81_5_a5,
author = {B. N. Enginbarian},
title = {On the {Convolution} {Equation} with {Positive} {Kernel} {Expressed} via an {Alternating} {Measure}},
journal = {Matemati\v{c}eskie zametki},
pages = {693--702},
publisher = {mathdoc},
volume = {81},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/}
}
B. N. Enginbarian. On the Convolution Equation with Positive Kernel Expressed via an Alternating Measure. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 693-702. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a5/