Monotone Additive Matrix Transformations
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 681-692
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate additive transformations on the space of real or complex matrices that are monotone with respect to any admissible partial order relation. A complete characterization of these transformations is obtained. In the real case, we show that such transformations are linear and that all nonzero monotone transformations are bijective. As a corollary, we characterize all additive transformations that are monotone with respect to certain classical matrix order relations, in particular, with respect to the Drazin order, left and right $*$-orders, and the diamond order.
Keywords:
matrix partial order, partially ordered set, Lewner order, Hartwig order, Drazin order, diamond order.
Mots-clés : monotone transformation
Mots-clés : monotone transformation
@article{MZM_2007_81_5_a4,
author = {A. \`E. Guterman},
title = {Monotone {Additive} {Matrix} {Transformations}},
journal = {Matemati\v{c}eskie zametki},
pages = {681--692},
publisher = {mathdoc},
volume = {81},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a4/}
}
A. È. Guterman. Monotone Additive Matrix Transformations. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 681-692. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a4/