Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_5_a18, author = {D. I. Saveliev and D. I. Saveliev}, title = {A~Report on a {Game} on the {Universe} {of~Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {797--800}, publisher = {mathdoc}, volume = {81}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a18/} }
D. I. Saveliev; D. I. Saveliev. A~Report on a Game on the Universe of~Sets. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a18/
[1] T. J. Jech, Set Theory, The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003 | MR | Zbl
[2] T. E. Forster, Set Theory with a Universal Set, Exploring an Untyped Universe, Oxford Logic Guides, 31, The Clarendon Press, New York, 1995 | MR | Zbl
[3] J. Barwise, L. Moss, Vicious Circles, On the Mathematics of Non-Wellfounded Phenomena, CSLI Lecture Notes, 60, CSLI Publ., Stanford, CA, 1996 | MR | Zbl
[4] D. I. Saveliev (to appear)
[5] M. Forti, F. Honsell, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:3 (1983), 493–522 | MR | Zbl
[6] P. Aczel, Non-Well-Founded Sets, CSLI Lecture Notes, 14, CSLI Publ., Stanford, CA, 1988 | MR | Zbl
[7] G. D'Agostino, Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation, Interpolation, Ph.D. Thesis, ILLC Diss. Ser., 4, Institute for Logic, Language and Computation, Amsterdam, 1998
[8] L. Rieger, Czechoslovak Math. J., 7 (82) (1957), 323–357 | MR | Zbl