A~Report on a Game on the Universe of~Sets
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 797-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Zermelo–Fraenkel set theory, axiom of regularity, axiom of choice, winning set (in a game on the universe of sets), non-well-founded model.
@article{MZM_2007_81_5_a18,
     author = {D. I. Saveliev and D. I. Saveliev},
     title = {A~Report on a {Game} on the {Universe} {of~Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {797--800},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a18/}
}
TY  - JOUR
AU  - D. I. Saveliev
AU  - D. I. Saveliev
TI  - A~Report on a Game on the Universe of~Sets
JO  - Matematičeskie zametki
PY  - 2007
SP  - 797
EP  - 800
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a18/
LA  - ru
ID  - MZM_2007_81_5_a18
ER  - 
%0 Journal Article
%A D. I. Saveliev
%A D. I. Saveliev
%T A~Report on a Game on the Universe of~Sets
%J Matematičeskie zametki
%D 2007
%P 797-800
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a18/
%G ru
%F MZM_2007_81_5_a18
D. I. Saveliev; D. I. Saveliev. A~Report on a Game on the Universe of~Sets. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a18/

[1] T. J. Jech, Set Theory, The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003 | MR | Zbl

[2] T. E. Forster, Set Theory with a Universal Set, Exploring an Untyped Universe, Oxford Logic Guides, 31, The Clarendon Press, New York, 1995 | MR | Zbl

[3] J. Barwise, L. Moss, Vicious Circles, On the Mathematics of Non-Wellfounded Phenomena, CSLI Lecture Notes, 60, CSLI Publ., Stanford, CA, 1996 | MR | Zbl

[4] D. I. Saveliev (to appear)

[5] M. Forti, F. Honsell, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:3 (1983), 493–522 | MR | Zbl

[6] P. Aczel, Non-Well-Founded Sets, CSLI Lecture Notes, 14, CSLI Publ., Stanford, CA, 1988 | MR | Zbl

[7] G. D'Agostino, Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation, Interpolation, Ph.D. Thesis, ILLC Diss. Ser., 4, Institute for Logic, Language and Computation, Amsterdam, 1998

[8] L. Rieger, Czechoslovak Math. J., 7 (82) (1957), 323–357 | MR | Zbl