Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_5_a14, author = {E. V. Sharoiko}, title = {On the {Finiteness} of the {Number} of {Orbits} on {Quasihomogeneous} $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds}, journal = {Matemati\v{c}eskie zametki}, pages = {766--775}, publisher = {mathdoc}, volume = {81}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/} }
TY - JOUR AU - E. V. Sharoiko TI - On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds JO - Matematičeskie zametki PY - 2007 SP - 766 EP - 775 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/ LA - ru ID - MZM_2007_81_5_a14 ER -
E. V. Sharoiko. On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 766-775. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/
[1] F. Pauer, “Closure of $\mathrm{SL}_2$-orbits in projective spaces”, Manuscripta Math., 87:3 (1995), 295–309 | DOI | MR | Zbl
[2] V. L. Popov, “Struktura zamykanii orbit v prostranstvakh konechnomernykh lineinykh predstavlenii gruppy $\mathrm{SL}_2$”, Matem. zametki, 16:6 (1974), 943–950 | MR | Zbl
[3] Kh. Kraft, Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl
[4] E. B. Vinberg, “Slozhnost deistvii reduktivnykh grupp”, Funkts. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl
[5] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, 8, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl