On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 766-775
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain an effective criterion for the finiteness of the number of orbits contained in the closure of a given $G$-orbit for the case of a rational linear action of the group $G:=(\mathbb C^*)^k\times SL_2(\mathbb C)$ on a finite-dimensional linear space as well as on the projectivization of such a space.
Keywords:
the group $SL_2(\mathbb C)$, rational linear action, character lattice, Borel subgroup, analytic curve, irreducible algebraic variety.
Mots-clés : orbit
Mots-clés : orbit
@article{MZM_2007_81_5_a14,
author = {E. V. Sharoiko},
title = {On the {Finiteness} of the {Number} of {Orbits} on {Quasihomogeneous} $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds},
journal = {Matemati\v{c}eskie zametki},
pages = {766--775},
year = {2007},
volume = {81},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/}
}
TY - JOUR AU - E. V. Sharoiko TI - On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds JO - Matematičeskie zametki PY - 2007 SP - 766 EP - 775 VL - 81 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/ LA - ru ID - MZM_2007_81_5_a14 ER -
E. V. Sharoiko. On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 766-775. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/
[1] F. Pauer, “Closure of $\mathrm{SL}_2$-orbits in projective spaces”, Manuscripta Math., 87:3 (1995), 295–309 | DOI | MR | Zbl
[2] V. L. Popov, “Struktura zamykanii orbit v prostranstvakh konechnomernykh lineinykh predstavlenii gruppy $\mathrm{SL}_2$”, Matem. zametki, 16:6 (1974), 943–950 | MR | Zbl
[3] Kh. Kraft, Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl
[4] E. B. Vinberg, “Slozhnost deistvii reduktivnykh grupp”, Funkts. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl
[5] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, 8, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl