On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 766-775.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an effective criterion for the finiteness of the number of orbits contained in the closure of a given $G$-orbit for the case of a rational linear action of the group $G:=(\mathbb C^*)^k\times SL_2(\mathbb C)$ on a finite-dimensional linear space as well as on the projectivization of such a space.
Keywords: the group $SL_2(\mathbb C)$, rational linear action, character lattice, Borel subgroup, analytic curve, irreducible algebraic variety.
Mots-clés : orbit
@article{MZM_2007_81_5_a14,
     author = {E. V. Sharoiko},
     title = {On the {Finiteness} of the {Number} of {Orbits} on {Quasihomogeneous} $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {766--775},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/}
}
TY  - JOUR
AU  - E. V. Sharoiko
TI  - On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds
JO  - Matematičeskie zametki
PY  - 2007
SP  - 766
EP  - 775
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/
LA  - ru
ID  - MZM_2007_81_5_a14
ER  - 
%0 Journal Article
%A E. V. Sharoiko
%T On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds
%J Matematičeskie zametki
%D 2007
%P 766-775
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/
%G ru
%F MZM_2007_81_5_a14
E. V. Sharoiko. On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 766-775. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a14/

[1] F. Pauer, “Closure of $\mathrm{SL}_2$-orbits in projective spaces”, Manuscripta Math., 87:3 (1995), 295–309 | DOI | MR | Zbl

[2] V. L. Popov, “Struktura zamykanii orbit v prostranstvakh konechnomernykh lineinykh predstavlenii gruppy $\mathrm{SL}_2$”, Matem. zametki, 16:6 (1974), 943–950 | MR | Zbl

[3] Kh. Kraft, Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl

[4] E. B. Vinberg, “Slozhnost deistvii reduktivnykh grupp”, Funkts. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl

[5] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, 8, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl