Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_5_a13, author = {S. Simich}, title = {Some {Properties} of {Entire} {Functions} with {Nonnegative} {Taylor} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {760--765}, publisher = {mathdoc}, volume = {81}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a13/} }
S. Simich. Some Properties of Entire Functions with Nonnegative Taylor Coefficients. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 760-765. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a13/
[1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[2] R. P. Boas, Entire Functions, Academic Press Inc. Publ., New York, 1954 | MR | Zbl
[3] S. Bloom, “A characterisation of $B$-slowly varying functions”, Proc. Amer. Math. Soc., 54 (1976), 243–250 | DOI | MR | Zbl
[4] S. I. Resnick, Extreme Values, Regular Variation and Point Processes, Applied Probability, 4, Springer-Verlag, New York–Berlin, 1987 | MR | Zbl
[5] M. R. Leadbetter, G. Lindgren, H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer Series in Statistics, Springer-Verlag, Berlin, 1983 | MR | Zbl
[6] G. H. Hardy, Orders of Infinity, Cambridge Univ. Press, Cambridge, 1924 | MR | Zbl
[7] G. Khardi, Dzh. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl