Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_5_a10, author = {N. G. Moshchevitin and A. M. Raigorodskii}, title = {Colorings of the {Space} $\mathbb R^n$ with {Several} {Forbidden} {Distances}}, journal = {Matemati\v{c}eskie zametki}, pages = {733--743}, publisher = {mathdoc}, volume = {81}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/} }
TY - JOUR AU - N. G. Moshchevitin AU - A. M. Raigorodskii TI - Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances JO - Matematičeskie zametki PY - 2007 SP - 733 EP - 743 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/ LA - ru ID - MZM_2007_81_5_a10 ER -
N. G. Moshchevitin; A. M. Raigorodskii. Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 733-743. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/
[1] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his Mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., 11, Springer, Berlin, 2002, 649–666 | MR | Zbl
[2] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | MR | Zbl
[3] J. Pach, P. K. Agarwal, Combinatorial Geometry, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley Sons, New York, 1995 | MR | Zbl
[4] V. Klee, S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, The Dolciani Mathematical Expositions, 11, Math. Assoc. America, Washington, DC, 1991 | MR | Zbl
[5] A. Soifer, “Chromatic number of the plane: a historical essay”, Geombinatorics, 1:3 (1991), 13–15 | MR | Zbl
[6] A. Soifer, Mathematical Coloring Book, Center for Excellence in Mathematical Education, Colorado Springs, CO, 1997
[7] A. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosveschenie, Tretya seriya, 8, Izd-vo MTsNMO, M., 2004, 185–221
[8] I. Z. Ruzsa, Zs. Tuza, M. Voigt, “Distance graphs with finite chromatic number”, J. Combin. Theory Ser. B, 85:1 (2002), 181–187 | DOI | MR | Zbl
[9] Y. Katznelson, “Chromatic numbers of Cayley graphs on $\mathbb{Z}$ and recurrence”, Combinatorica, 21:2 (2001), 211–219 | DOI | MR | Zbl
[10] R. K. Akhunzhanov, N. G. Moschevitin, “O khromaticheskom chisle distantsionnogo grafa, svyazannogo s lakunarnoi posledovatelnostyu”, Dokl. RAN, 397:3 (2004), 295–296 | MR
[11] H. Fürstenberg, Y. Katznelson, B. Weiss, “Ergodic theory and configurations in sets of positive density”, Mathematics of Ramsey Theory, Algorithms Combin., 5, Springer, Berlin, 1990, 184–198 | MR | Zbl
[12] J. Bourgain, “A Szemeredi type theorem for sets of positive density in $\mathbb R^k$”, Israel J. Math., 54:3 (1986), 307–316 | DOI | MR | Zbl
[13] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva s metrikoi $l_q$”, UMN, 59:5 (2004), 161–162 | MR | Zbl
[14] J.-H. Kang, Z. Füredi, “Distance graphs on $\mathbb{Z}^n$ with $l_1$-norm”, Theoret. Comput. Sci., 319:1–3 (2004), 357–366 | MR | Zbl
[15] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | MR | Zbl
[16] A. M. Raigorodskii, “Problema Erdësha–Khadvigera i khromaticheskie chisla konechnykh geometricheskikh grafov”, Matem. sb., 196:1 (2005), 123–156 | MR | Zbl
[17] Y. G. Chen, T. W. Cusick, “The view-obstruction problem for $n$-dimensional cubes”, J. Number Theory, 74:1 (1999), 126–133 | DOI | MR | Zbl
[18] B. de Mathan, “Numbers contravening a condition in density modulo $1$”, Acta Math. Hungar., 36:3–4 (1980), 237–241 | DOI | MR | Zbl
[19] A. D. Pollington, “On the density of sequence $\{n_k\theta\}$”, Illinois J. Math., 23:4 (1979), 511–515 | MR | Zbl
[20] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, UMN, 55:2 (2000), 147–148 | MR | Zbl