Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 733-743
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the classical problem concerning the chromatic number of a metric space, i.e., the minimal number of colors required to color all points in the space so that the distance (the value of the metric) between points of the same color does not belong to a given set of positive real numbers (the set of forbidden distances). New bounds for the chromatic number are obtained for the case in which the space is $\mathbb R^n$ with a metric generated by some norm (in particular, $l_p$) and the set of forbidden distances either is finite or forms a lacunary sequence.
Keywords:
chromatic number, measurable chromatic number, coloring with forbidden distances, lacunary sequence, independence member of a graph, polyhedron
Mots-clés : Diophantine approximation.
Mots-clés : Diophantine approximation.
@article{MZM_2007_81_5_a10,
author = {N. G. Moshchevitin and A. M. Raigorodskii},
title = {Colorings of the {Space} $\mathbb R^n$ with {Several} {Forbidden} {Distances}},
journal = {Matemati\v{c}eskie zametki},
pages = {733--743},
publisher = {mathdoc},
volume = {81},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/}
}
TY - JOUR AU - N. G. Moshchevitin AU - A. M. Raigorodskii TI - Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances JO - Matematičeskie zametki PY - 2007 SP - 733 EP - 743 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/ LA - ru ID - MZM_2007_81_5_a10 ER -
N. G. Moshchevitin; A. M. Raigorodskii. Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 733-743. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/