Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances
Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 733-743

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the classical problem concerning the chromatic number of a metric space, i.e., the minimal number of colors required to color all points in the space so that the distance (the value of the metric) between points of the same color does not belong to a given set of positive real numbers (the set of forbidden distances). New bounds for the chromatic number are obtained for the case in which the space is $\mathbb R^n$ with a metric generated by some norm (in particular, $l_p$) and the set of forbidden distances either is finite or forms a lacunary sequence.
Keywords: chromatic number, measurable chromatic number, coloring with forbidden distances, lacunary sequence, independence member of a graph, polyhedron
Mots-clés : Diophantine approximation.
@article{MZM_2007_81_5_a10,
     author = {N. G. Moshchevitin and A. M. Raigorodskii},
     title = {Colorings of the {Space} $\mathbb R^n$ with {Several} {Forbidden} {Distances}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {733--743},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
AU  - A. M. Raigorodskii
TI  - Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances
JO  - Matematičeskie zametki
PY  - 2007
SP  - 733
EP  - 743
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/
LA  - ru
ID  - MZM_2007_81_5_a10
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%A A. M. Raigorodskii
%T Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances
%J Matematičeskie zametki
%D 2007
%P 733-743
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/
%G ru
%F MZM_2007_81_5_a10
N. G. Moshchevitin; A. M. Raigorodskii. Colorings of the Space $\mathbb R^n$ with Several Forbidden Distances. Matematičeskie zametki, Tome 81 (2007) no. 5, pp. 733-743. http://geodesic.mathdoc.fr/item/MZM_2007_81_5_a10/