A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 614-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

For set-valued random sequences $(G_n)_{n=0}^N$ with relatively open convex values $G_n(\omega)$, we prove a new test for the existence of a sequence $(x_n)_{n=0}^N$ of selectors adapted to the filtration and admitting an equivalent martingale measure. The statement is formulated in terms of the supports of regular upper conditional distributions of $G_n$. This is a strengthening of the main result proved in our previous paper [1], where the openness of the set $G_n(\omega)$ was assumed and a possible weakening of this condition was discussed.
Keywords: representation, set-valued random sequence, martingale selection, measurable set-valued map, arbitrage theory, market model, pricing process.
@article{MZM_2007_81_4_a13,
     author = {D. B. Rokhlin},
     title = {A {Theorem} on {Martingale} {Selection} for {Relatively} {Open} {Convex} {Set-Valued} {Random} {Sequences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {614--620},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a13/}
}
TY  - JOUR
AU  - D. B. Rokhlin
TI  - A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences
JO  - Matematičeskie zametki
PY  - 2007
SP  - 614
EP  - 620
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a13/
LA  - ru
ID  - MZM_2007_81_4_a13
ER  - 
%0 Journal Article
%A D. B. Rokhlin
%T A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences
%J Matematičeskie zametki
%D 2007
%P 614-620
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a13/
%G ru
%F MZM_2007_81_4_a13
D. B. Rokhlin. A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 614-620. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a13/

[1] D. B. Rokhlin, “Zadacha o martingalnom vybore v sluchae konechnogo diskretnogo vremeni”, Teoriya veroyatn. i ee primen., 50:3 (2005), 480–500 | MR

[2] J. M. Harrison, S. R. Pliska, “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl

[3] R. C. Dalang, A. Morton, W. Willinger, “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stoch. Stoch. Rep., 29:2 (1990), 185–201 | MR | Zbl

[4] J. Jacod, A. N. Shiryaev, “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl

[5] A. N. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998

[6] Y. Kabanov, M. Rásonyi, C. Stricker, “No-arbitrage criteria for financial markets with efficient friction”, Finance Stoch., 6:3 (2002), 371–382 | DOI | MR | Zbl

[7] W. Schachermayer, “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl

[8] Y. Kabanov, M. Rásonyi, C. Stricker, “On the closedness of sums of convex cones in $L^0$ and the robust no-arbitrage property”, Finance Stoch., 7:3 (2003), 403–411 | DOI | MR | Zbl

[9] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis, Volume 1: Theory, Kluwer Academic, Dordrecht, 1997 | MR | Zbl

[10] Wagner D.H., “Survey of measurable selection theorems”, SIAM J. Control Optim., 15:5 (1977), 859–903 | DOI | MR | Zbl

[11] S. M. Srivastava, A Course on Borel Sets, Springer, New York, 1998 | MR | Zbl

[12] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989 | MR | Zbl

[13] D. B. Rokhlin, “Rasshirennaya versiya teoremy Dalanga–Mortona–Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | MR | Zbl