Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_4_a13, author = {D. B. Rokhlin}, title = {A {Theorem} on {Martingale} {Selection} for {Relatively} {Open} {Convex} {Set-Valued} {Random} {Sequences}}, journal = {Matemati\v{c}eskie zametki}, pages = {614--620}, publisher = {mathdoc}, volume = {81}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a13/} }
D. B. Rokhlin. A Theorem on Martingale Selection for Relatively Open Convex Set-Valued Random Sequences. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 614-620. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a13/
[1] D. B. Rokhlin, “Zadacha o martingalnom vybore v sluchae konechnogo diskretnogo vremeni”, Teoriya veroyatn. i ee primen., 50:3 (2005), 480–500 | MR
[2] J. M. Harrison, S. R. Pliska, “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl
[3] R. C. Dalang, A. Morton, W. Willinger, “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stoch. Stoch. Rep., 29:2 (1990), 185–201 | MR | Zbl
[4] J. Jacod, A. N. Shiryaev, “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl
[5] A. N. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998
[6] Y. Kabanov, M. Rásonyi, C. Stricker, “No-arbitrage criteria for financial markets with efficient friction”, Finance Stoch., 6:3 (2002), 371–382 | DOI | MR | Zbl
[7] W. Schachermayer, “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl
[8] Y. Kabanov, M. Rásonyi, C. Stricker, “On the closedness of sums of convex cones in $L^0$ and the robust no-arbitrage property”, Finance Stoch., 7:3 (2003), 403–411 | DOI | MR | Zbl
[9] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis, Volume 1: Theory, Kluwer Academic, Dordrecht, 1997 | MR | Zbl
[10] Wagner D.H., “Survey of measurable selection theorems”, SIAM J. Control Optim., 15:5 (1977), 859–903 | DOI | MR | Zbl
[11] S. M. Srivastava, A Course on Borel Sets, Springer, New York, 1998 | MR | Zbl
[12] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989 | MR | Zbl
[13] D. B. Rokhlin, “Rasshirennaya versiya teoremy Dalanga–Mortona–Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | MR | Zbl